Yes, you are nearly right.  The pca.explained_variance_ratio_ parameter returns a vector of the variance explained by each dimension.  Thus pca.explained_variance_ratio_[i]  gives the variance explained solely by the i+1st dimension.
You probably want to do pca.explained_variance_ratio_.cumsum().  That will return a vector x such that x[i] returns the cumulative variance explained by the first i+1 dimensions.
import numpy as np
from sklearn.decomposition import PCA
np.random.seed(0)
my_matrix = np.random.randn(20, 5)
my_model = PCA(n_components=5)
my_model.fit_transform(my_matrix)
print my_model.explained_variance_
print my_model.explained_variance_ratio_
print my_model.explained_variance_ratio_.cumsum()
[ 1.50756565  1.29374452  0.97042041  0.61712667  0.31529082]
[ 0.32047581  0.27502207  0.20629036  0.13118776  0.067024  ]
[ 0.32047581  0.59549787  0.80178824  0.932976    1.        ]
So in my random toy data, if I picked k=4 I would retain 93.3% of the variance.