Since you state that you need a precision somewhere between 'float' and 'double': you can zero out any number of least significant bits in single- and double-precision floats. IEEE-754 floating point numers are represented binary roughly like seeefffffffff, which represents the value
sign*1.fffffff*2^(eee).
You can zero out the least significant fraction (f) bits. For single-precision (32-bit) floats, there are 23 fraction bits of which you can zero out up to 22. For double-precision (64-bit), it's 52 and up to 51. (If you zero out all bits, then the special values NaN and +/-inf will be lost).
Especially if the data represents decimal values such as 1.2345, this will help in data compression. That is because 1.2345 cannot be represented exactly as a binary floating point value, but rather as 0x3ff3c083126e978d, which is not friendly to data compression. Chopping off the least significant 24 bits will result in 0x3ff3c08312000000, which is still accurate to about 9 decimal digits (in this example, the difference is 1.6e-9).
If you do this on the raw data, and then store the differences between subsequential numbers, it will be even more compression-friendly (via gzip) if the raw data varies slowly.
Here is an example in C:
#include <inttypes.h>
double double_trunc(double x, int zerobits)
{
// mask is e.g. 0xffffffffffff0000 for zerobits==16
uint64_t mask = -(1LL << zerobits);
uint64_t floatbits = (*((uint64_t*)(&x)));
floatbits &= mask;
x = * ((double*) (&floatbits));
return x;
}
And one in python/numpy:
import numpy as np
def float_trunc(a, zerobits):
"""Set the least significant <zerobits> bits to zero in a numpy float32 or float64 array.
Do this in-place. Also return the updated array.
Maximum values of 'nzero': 51 for float64; 22 for float32.
"""
at = a.dtype
assert at == np.float64 or at == np.float32 or at == np.complex128 or at == np.complex64
if at == np.float64 or at == np.complex128:
assert nzero <= 51
mask = 0xffffffffffffffff - (1 << nzero) + 1
bits = a.view(np.uint64)
bits &= mask
elif at == np.float32 or at == np.complex64:
assert nzero <= 22
mask = 0xffffffff - (1 << nzero) + 1
bits = a.view(np.uint32)
bits &= mask
return a