It is impossible to get estimation of new factor levels, in fixed effect modelling, including linear models and generalized linear models. glm (as well as lm) keeps records of what factor levels are presented and used during model fitting, and can be found in testreg$xlevels.
Your model formula for model estimation is:
returnShipment ~ size + color + price + manufacturerID + salutation +
state + age + deliverytime
then predict complains new factor levels 125, 136, 137 for manufactureID. This means, these levels are not inside testreg$xlevels$manufactureID, therefore has no associated coefficient for prediction. In this case, we have to drop this factor variable and use a prediction formula:
returnShipment ~ size + color + price + salutation +
state + age + deliverytime
However, the standard predict routine can not take your customized prediction formula. There are commonly two solutions:
- extract model matrix and model coefficients from
testreg, and manually predict model terms we want by matrix-vector multiplication. This is what the link given in your post suggests to do;
- reset the factor levels in
test into any one level appeared in testreg$xlevels$manufactureID, for example, testreg$xlevels$manufactureID[1]. As such, we can still use the standard predict for prediction.
Now, let's first pick up a factor level used for model fitting
xlevels <- testreg$xlevels$manufacturerID
mID125 <- xlevels[1]
Then we assign this level to your prediction data:
replacement <- factor(rep(mID125, length = nrow(test)), levels = xlevels)
test$manufacturerID <- replacement
And we are ready to predict:
pred <- predict(testreg, test, type = "link") ## don't use type = "response" here!!
In the end, we adjust this linear predictor, by subtracting factor estimate:
est <- coef(testreg)[paste0(manufacturerID, mID125)]
pred <- pred - est
Finally, if you want prediction on the original scale, you apply the inverse of link function:
testreg$family$linkinv(pred)
update:
You complained that you met various troubles in trying the above solutions. Here is why.
Your code:
testreg <- glm(train$returnShipment~ train$size + train$color +
train$price + train$manufacturerID + train$salutation +
train$state + train$age + train$deliverytime,
family=binomial(link="logit"), data=train)
is a very bad way to specify your model formula. train$returnShipment, etc, will restrict the environment of getting variables strictly to data frame train, and you will have trouble in later prediction with other data sets, like test.
As a simple example for such drawback, we simulate some toy data and fit a GLM:
set.seed(0); y <- rnorm(50, 0, 1)
set.seed(0); a <- sample(letters[1:4], 50, replace = TRUE)
foo <- data.frame(y = y, a = factor(a))
toy <- glm(foo$y ~ foo$a, data = foo) ## bad style
> toy$formula
foo$y ~ foo$a
> toy$xlevels
$`foo$a`
[1] "a" "b" "c" "d"
Now, we see everything comes with a prefix foo$. During prediction:
newdata <- foo[1:2, ] ## take first 2 rows of "foo" as "newdata"
rm(foo) ## remove "foo" from R session
predict(toy, newdata)
we get an error:
Error in eval(expr, envir, enclos) : object 'foo' not found
The good style is to specify environment of getting data from data argument of the function:
foo <- data.frame(y = y, a = factor(a))
toy <- glm(y ~ a, data = foo)
then foo$ goes away.
> toy$formula
y ~ a
> toy$xlevels
$a
[1] "a" "b" "c" "d"
This would explain two things:
- You complained to me in the comment that when you do
testreg$xlevels$manufactureID, you get NULL;
The prediction error you posted
Error in model.frame.default(Terms, newdata, na.action=na.action, xlev=object$xlevels):
Factor 'train$manufacturerID' has new levels 125, 136, 137
complains train$manufacturerID instead of test$manufacturerID.