I was motivated to use pandas rolling feature to perform a rolling multi-factor regression (This question is NOT about rolling multi-factor regression).  I expected that I'd be able to use apply after a df.rolling(2) and take the resulting pd.DataFrame extract the ndarray with .values and perform the requisite matrix multiplication.  It didn't work out that way.
Here is what I found:
import pandas as pd
import numpy as np
np.random.seed([3,1415])
df = pd.DataFrame(np.random.rand(5, 2).round(2), columns=['A', 'B'])
X = np.random.rand(2, 1).round(2)
What do objects look like:
print "\ndf = \n", df
print "\nX = \n", X
print "\ndf.shape =", df.shape, ", X.shape =", X.shape
df = 
      A     B
0  0.44  0.41
1  0.46  0.47
2  0.46  0.02
3  0.85  0.82
4  0.78  0.76
X = 
[[ 0.93]
 [ 0.83]]
df.shape = (5, 2) , X.shape = (2L, 1L)
Matrix multiplication behaves normally:
df.values.dot(X)
array([[ 0.7495],
       [ 0.8179],
       [ 0.4444],
       [ 1.4711],
       [ 1.3562]])
Using apply to perform row by row dot product behaves as expected:
df.apply(lambda x: x.values.dot(X)[0], axis=1)
0    0.7495
1    0.8179
2    0.4444
3    1.4711
4    1.3562
dtype: float64
Groupby -> Apply behaves as I'd expect:
df.groupby(level=0).apply(lambda x: x.values.dot(X)[0, 0])
0    0.7495
1    0.8179
2    0.4444
3    1.4711
4    1.3562
dtype: float64
But when I run:
df.rolling(1).apply(lambda x: x.values.dot(X))
I get:
AttributeError: 'numpy.ndarray' object has no attribute 'values'
Ok, so pandas is using straight ndarray within its rolling implementation.  I can handle that.  Instead of using .values to get the ndarray, let's try:
df.rolling(1).apply(lambda x: x.dot(X))
shapes (1,) and (2,1) not aligned: 1 (dim 0) != 2 (dim 0)
Wait! What?!
So I created a custom function to look at the what rolling is doing.
def print_type_sum(x):
    print type(x), x.shape
    return x.sum()
Then ran:
print df.rolling(1).apply(print_type_sum)
<type 'numpy.ndarray'> (1L,)
<type 'numpy.ndarray'> (1L,)
<type 'numpy.ndarray'> (1L,)
<type 'numpy.ndarray'> (1L,)
<type 'numpy.ndarray'> (1L,)
<type 'numpy.ndarray'> (1L,)
<type 'numpy.ndarray'> (1L,)
<type 'numpy.ndarray'> (1L,)
<type 'numpy.ndarray'> (1L,)
<type 'numpy.ndarray'> (1L,)
      A     B
0  0.44  0.41
1  0.46  0.47
2  0.46  0.02
3  0.85  0.82
4  0.78  0.76
My resulting pd.DataFrame is the same, that's good.  But it printed out 10 single dimensional ndarray objects.  What about rolling(2)
print df.rolling(2).apply(print_type_sum)
<type 'numpy.ndarray'> (2L,)
<type 'numpy.ndarray'> (2L,)
<type 'numpy.ndarray'> (2L,)
<type 'numpy.ndarray'> (2L,)
<type 'numpy.ndarray'> (2L,)
<type 'numpy.ndarray'> (2L,)
<type 'numpy.ndarray'> (2L,)
<type 'numpy.ndarray'> (2L,)
      A     B
0   NaN   NaN
1  0.90  0.88
2  0.92  0.49
3  1.31  0.84
4  1.63  1.58
Same thing, expect output but it printed 8 ndarray objects.  rolling is producing a single dimensional ndarray of length window for each column as opposed to what I expected which was an ndarray of shape (window, len(df.columns)).
Question is Why?
I now don't have a way to easily run a rolling multi-factor regression.