Consider the following data frame:
(tmp_df <-
structure(list(class = c(0L, 0L, 1L, 1L, 2L, 2L), logi = c(TRUE,
FALSE, TRUE, FALSE, TRUE, FALSE), val = c(1, 1, 1, 1, 1, 1),
taken = c(1.00684931506849, 0.993197278911565, 1.025, 0.975609756097561,
1.00826446280992, 0.991803278688525)), class = c("tbl_df",
"tbl", "data.frame"), row.names = c(NA, -6L), .Names = c("class",
"logi", "val", "taken")))
which creates:
Source: local data frame [6 x 4]
class logi val taken
<int> <lgl> <dbl> <dbl>
1 0 TRUE 1 1.0068493
2 0 FALSE 1 0.9931973
3 1 TRUE 1 1.0250000
4 1 FALSE 1 0.9756098
5 2 TRUE 1 1.0082645
6 2 FALSE 1 0.9918033
I wish to group by class, and if each group contains two members, then subtract 1 from val if logi == FALSE, otherwise, subtract the minimum value of taken in that group from val. If each group does not contain two members, then we subtract zero from val.
Code using dplyr package to do the above can be expressed using:
tmp_df %>%
group_by(class) %>%
mutate(taken_2 = ifelse(n() != 2, 0,
ifelse(logi, min(taken), 1)),
not_taken = val - taken_2)
However, this produces the incorrect result, where by the second ifelse always resolves to the first condition:
Source: local data frame [6 x 6]
Groups: class [3]
class logi val taken taken_2 not_taken
<int> <lgl> <dbl> <dbl> <dbl> <dbl>
1 0 TRUE 1 1.0068493 0.9931973 0.006802721
2 0 FALSE 1 0.9931973 0.9931973 0.006802721
3 1 TRUE 1 1.0250000 0.9756098 0.024390244
4 1 FALSE 1 0.9756098 0.9756098 0.024390244
5 2 TRUE 1 1.0082645 0.9918033 0.008196721
6 2 FALSE 1 0.9918033 0.9918033 0.008196721
The correct result can be produced if we do not have the first ifelse statement.
tmp_df %>%
group_by(class) %>%
mutate(taken_2 = ifelse(logi, min(taken), 1),
not_taken = val - taken_2)
producing:
Source: local data frame [6 x 6]
Groups: class [3]
class logi val taken taken_2 not_taken
<int> <lgl> <dbl> <dbl> <dbl> <dbl>
1 0 TRUE 1 1.0068493 0.9931973 0.006802721
2 0 FALSE 1 0.9931973 1.0000000 0.000000000 # correct!
3 1 TRUE 1 1.0250000 0.9756098 0.024390244
4 1 FALSE 1 0.9756098 1.0000000 0.000000000 # correct!
5 2 TRUE 1 1.0082645 0.9918033 0.008196721
6 2 FALSE 1 0.9918033 1.0000000 0.000000000 # correct!
We can see that this problem seems to be isolated to mutate and the nested ifelse by examining other code fragments that successfully do similar stuff:
tmp_df %>%
group_by(class) %>%
mutate(taken_2 = ifelse(n() != 3, 0,
ifelse(logi, min(taken), 1)),
not_taken = val - taken_2)
tmp_df_2 <-
tmp_df %>%
filter(row_number() <= 2)
(tmp_df_2$taken_2 <-
ifelse(c(0, 0), 0,
ifelse(tmp_df_2$logi, min(tmp_df_2$taken), 1)))
## but the following does not work (checks problem is not to do with grouping)
# tmp_df_2 %>%
# mutate(taken_2 = ifelse(n() != 2, 0,
# ifelse(logi, min(taken), 1)),
# not_taken = val - taken_2)
Why is this happening, and how can I obtain the expected behaviour? A workaround is to split the nested ifelse logic into multiple in-line mutates:
tmp_df %>%
group_by(class) %>%
mutate(taken_2 = ifelse(n() != 2, 0, 1),
taken_3 = taken_2 * ifelse(logi, min(taken), 1),
not_taken = val - taken_3)
Someone else has identified a similar problem with nested ifelse but I don't know whether it has the same root: ifelse using dplyr results in NAs for some records