One way to accomplish this is using morphological operations and contour detection.
With the former you essentially "bleed" all characters into a big chunky blob. With the latter, you locate these blobs in your image and extract the ones that seem interesting (meaning: big enough).
Script used:
import cv2
import sys
SCALE = 4
AREA_THRESHOLD = 427505.0 / 2
def show_scaled(name, img):
    try:
        h, w  = img.shape
    except ValueError:
        h, w, _  = img.shape
    cv2.imshow(name, cv2.resize(img, (w // SCALE, h // SCALE)))
def main():
    img = cv2.imread(sys.argv[1])
    img = img[10:-10, 10:-10] # remove the border, it confuses contour detection
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    show_scaled("original", gray)
    # black and white, and inverted, because
    # white pixels are treated as objects in
    # contour detection
    thresholded = cv2.adaptiveThreshold(
                gray, 255,
                cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV,
                25,
                15
            )
    show_scaled('thresholded', thresholded)
    # I use a kernel that is wide enough to connect characters
    # but not text blocks, and tall enough to connect lines.
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (13, 33))
    closing = cv2.morphologyEx(thresholded, cv2.MORPH_CLOSE, kernel)
    im2, contours, hierarchy = cv2.findContours(closing, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    show_scaled("closing", closing)
    for contour in contours:
        convex_contour = cv2.convexHull(contour)
        area = cv2.contourArea(convex_contour)
        if area > AREA_THRESHOLD:
            cv2.drawContours(img, [convex_contour], -1, (255,0,0), 3)
    show_scaled("contours", img)
    cv2.imwrite("/tmp/contours.png", img)
    cv2.waitKey()
if __name__ == '__main__':
    main()
Then all you need is to compute the bounding box of the contour, and cut it from the original image. Add a bit of a margin and feed the whole thing to tesseract.