You won't be able to instantiate a class with NumPy arrays as inputs without changing the class code. @PabloAlvarez and @NagaKiran already provided alternative: iterate with zip over arrays and instantiate class for each pair of elements. While this is pretty simple solution, it defeats the purpose of using NumPy with its efficient vectorized operations.
Here is how I suggest you to rewrite the code:
from typing import Union
import numpy as np
def total(a: Union[float, np.ndarray],
b: Union[float, np.ndarray],
n: int = 5) -> np.array:
"""Calculates what your self.tot was"""
bc = 8 * a
c = bc / b
vectorized_geometric_progression = np.vectorize(geometric_progression,
otypes=[np.ndarray])
l = np.stack(vectorized_geometric_progression(bc, c, n))
l = np.atleast_2d(l)
p = np.insert(l[:, :-1], 0, b, axis=1)
l = np.squeeze(l)
p = np.squeeze(p)
pl_avg = (p + l) / 2
komp = np.array([0.75 * pl_avg ** 2]).T
return komp + l
def geometric_progression(bc, c, n):
"""Calculates array l"""
return bc * np.logspace(start=0,
stop=n - 1,
num=n,
base=c + 2)
And you can call it both for sole numbers and NumPy arrays like that:
>>> print(total(1, 2))
[[2.6750000e+01 6.6750000e+01 3.0675000e+02 1.7467500e+03 1.0386750e+04]
[5.9600000e+02 6.3600000e+02 8.7600000e+02 2.3160000e+03 1.0956000e+04]
[2.1176000e+04 2.1216000e+04 2.1456000e+04 2.2896000e+04 3.1536000e+04]
[7.6205600e+05 7.6209600e+05 7.6233600e+05 7.6377600e+05 7.7241600e+05]
[2.7433736e+07 2.7433776e+07 2.7434016e+07 2.7435456e+07 2.7444096e+07]]
>>> print(total(3, 4))
[[1.71000000e+02 3.39000000e+02 1.68300000e+03 1.24350000e+04 9.84510000e+04]
[8.77200000e+03 8.94000000e+03 1.02840000e+04 2.10360000e+04 1.07052000e+05]
[5.59896000e+05 5.60064000e+05 5.61408000e+05 5.72160000e+05 6.58176000e+05]
[3.58318320e+07 3.58320000e+07 3.58333440e+07 3.58440960e+07 3.59301120e+07]
[2.29323574e+09 2.29323590e+09 2.29323725e+09 2.29324800e+09 2.29333402e+09]]
>>> print(total(np.array([1, 3]), np.array([2, 4])))
[[[2.67500000e+01 6.67500000e+01 3.06750000e+02 1.74675000e+03 1.03867500e+04]
[1.71000000e+02 3.39000000e+02 1.68300000e+03 1.24350000e+04 9.84510000e+04]]
[[5.96000000e+02 6.36000000e+02 8.76000000e+02 2.31600000e+03 1.09560000e+04]
[8.77200000e+03 8.94000000e+03 1.02840000e+04 2.10360000e+04 1.07052000e+05]]
[[2.11760000e+04 2.12160000e+04 2.14560000e+04 2.28960000e+04 3.15360000e+04]
[5.59896000e+05 5.60064000e+05 5.61408000e+05 5.72160000e+05 6.58176000e+05]]
[[7.62056000e+05 7.62096000e+05 7.62336000e+05 7.63776000e+05 7.72416000e+05]
[3.58318320e+07 3.58320000e+07 3.58333440e+07 3.58440960e+07 3.59301120e+07]]
[[2.74337360e+07 2.74337760e+07 2.74340160e+07 2.74354560e+07 2.74440960e+07]
[2.29323574e+09 2.29323590e+09 2.29323725e+09 2.29324800e+09 2.29333402e+09]]]
You can see that results are in compliance.
Explanation:
First of all I'd like to note that your calculation of p, k, and l doesn't have to be in the loop. Moreover, calculating k is unnecessary. If you see carefully, how elements of p and l are calculated, they are just geometric progressions (except the 1st element of p):
p = [b, b*c, b*c*(c+2), b*c*(c+2)**2, b*c*(c+2)**3, b*c*(c+2)**4, ...]
l = [b*c, b*c*(c+2), b*c*(c+2)**2, b*c*(c+2)**3, b*c*(c+2)**4, b*c*(c+2)**5, ...]
So, instead of that loop, you can use np.logspace. Unfortunately, np.logspace doesn't support base parameter as an array, so we have no other choice but to use np.vectorize which is just a loop under the hood...
Calculating of komp though is easily vectorized. You can see it in my example. No need for loops there.
Also, as I already noted in a comment, your class doesn't have to be a class, so I took a liberty of changing it to a function.
Next, note that input parameter c is overwritten, so I got rid of it. Variable y is never used. (Also, you could calculate it just as y = c + a * b * np.sign(a - b))
And finally, I'd like to remark that creating NumPy arrays with np.append is very inefficient (as it was pointed out by @kabanus), so you should always try to create them at once - no loops, no appending.
P.S.: I used np.atleast_2d and np.squeeze in my code and it could be unclear why I did it. They are necessary to avoid if-else clauses where we would check dimensions of array l. You can print intermediate results to see what is really going on there. Nothing difficult.