There is no general atomic method provided by CUDA that covers arbitrary struct atomic updates. Some possibilities:
Because you specifically want to update two adjacent 32-bit items, you could use a generalized 64-bit atomic operation that would be a variant of what is described here.
 
Another alternative is the one you already mention, basically implementing a critical section.
 
Finally, another possible approach may be parallel reduction, although this is not exactly analogous to atomic usage
 
Along the lines of suggestion 1 above, here is a modification of the code from this answer which may indicate how you can use a 64-bit atomic:
$ cat t56.cu
#include <stdio.h>
#define DSIZE 512
#define nTPB 256
#define cudaCheckErrors(msg) \
    do { \
        cudaError_t __err = cudaGetLastError(); \
        if (__err != cudaSuccess) { \
            fprintf(stderr, "Fatal error: %s (%s at %s:%d)\n", \
                msg, cudaGetErrorString(__err), \
                __FILE__, __LINE__); \
            fprintf(stderr, "*** FAILED - ABORTING\n"); \
            exit(1); \
        } \
    } while (0)
typedef union {
  float floats[2];
  unsigned long long int ulong;    // for atomic update
} my_atomics;
__device__ my_atomics test;
__device__ unsigned long long int my_atomicAdd_2floats(unsigned long long int* address, float val0, float val1)
{
    my_atomics loctest;
    unsigned long long old = *address;
    do {
      loctest.ulong = old;
      my_atomics loc;
      loc.floats[0] = val0 + loctest.floats[0];
      loc.floats[1] = val1 + loctest.floats[1];
      old = atomicCAS(address, loctest.ulong,  loc.ulong);}
    while (old != loctest.ulong);
    return old;
}
__global__ void min_test(const float* data)
{
    int idx = (blockDim.x * blockIdx.x) + threadIdx.x;
    if (idx < DSIZE)
      my_atomicAdd_2floats(&(test.ulong), data[idx], (float)idx);
}
int main() {
  float *d_data, *h_data;
  my_atomics my_init;
  my_init.floats[0] = 0.0f;
  my_init.floats[1] = 0.0f;
  h_data = (float *)malloc(DSIZE * sizeof(float));
  if (h_data == 0) {printf("malloc fail\n"); return 1;}
  cudaMalloc((void **)&d_data, DSIZE * sizeof(float));
  cudaCheckErrors("cm1 fail");
  for (int i = 0; i < DSIZE; i++) h_data[i] = 1.0f;
  cudaMemcpy(d_data, h_data, DSIZE*sizeof(float), cudaMemcpyHostToDevice);
  cudaCheckErrors("cmcp1 fail");
  cudaMemcpyToSymbol(test, &(my_init.ulong), sizeof(unsigned long long int));
  cudaCheckErrors("cmcp2 fail");
  min_test<<<(DSIZE+nTPB-1)/nTPB, nTPB>>>(d_data);
  cudaDeviceSynchronize();
  cudaCheckErrors("kernel fail");
  cudaMemcpyFromSymbol(&(my_init.ulong), test, sizeof(unsigned long long int));
  cudaCheckErrors("cmcp3 fail");
  printf("device float0 result = %f\n", my_init.floats[0]);
  printf("device float1 result = %f\n", my_init.floats[1]);
  float host_val0 = 0.0f;
  float host_val1 = 0.0f;
  for (int i=0; i<DSIZE; i++) {
          host_val0 += h_data[i];
          host_val1 += (float)(i);}
  printf("host float0 result = %f\n", host_val0);
  printf("host float1 result = %f\n", host_val1);
  return 0;
}
$ nvcc -arch=sm_35 -o t56 t56.cu -Wno-deprecated-gpu-targets
$ cuda-memcheck ./t56
========= CUDA-MEMCHECK
device float0 result = 512.000000
device float1 result = 130816.000000
host float0 result = 512.000000
host float1 result = 130816.000000
========= ERROR SUMMARY: 0 errors
$
I'm not guaranteeing the above code is defect free.  I suggest testing it carefully before using.