We iteratively add the input list xs to a list, starting with the empty list, to get the ever growing lists of repeated xs lists, and we put each such list of 0, 1, 2, ... xs lists through sequence, concatting the resulting lists:
infiniteListComb :: [a] -> [[a]]
infiniteListComb xs = sequence =<< iterate (xs :) []
-- = concatMap sequence (iterate (xs :) [])
e.g.
> take 4 (iterate ([1,2,3] :) [])
[[],[[1,2,3]],[[1,2,3],[1,2,3]],[[1,2,3],[1,2,3],[1,2,3]]]
> sequence [[1,2,3],[1,2,3]]
[[1,1],[1,2],[1,3],[2,1],[2,2],[2,3],[3,1],[3,2],[3,3]]
> take 14 $ sequence =<< iterate ([1,2,3] :) []
[[],[1],[2],[3],[1,1],[1,2],[1,3],[2,1],[2,2],[2,3],[3,1],[3,2],[3,3],[1,1,1]]
The essence of Monad is flatMap (splicing map).
sequence is the real magician here. It is equivalent to
sequence [xs, ys, ..., zs] =
[ [x,y,...,z] | x <- xs, y <- ys, ..., z <- zs ]
or in our case
sequence [xs, xs, ..., xs] =
[ [x,y,...,z] | x <- xs, y <- xs, ..., z <- xs ]
Coincidentally, sequence . replicate n is also known as replicateM n. But we spare the repeated counting from 0 to the growing n, growing them by 1 at a time instead.
We can inline and fuse together all the definitions used here, including
concat [a,b,c...] = a ++ concat [b,c...]
to arrive at a recursive solution.
Another approach, drawing on answer by chi,
combs xs = ys where
ys = [[]] ++ weave [ map (x:) ys | x <- xs ]
weave ((x:xs):r) = x : weave (r ++ [xs])
There are many ways to implement weave.