The below shows four different ways of returning the data stored in a .csv file/Pandas DataFrame (for solutions without using Pandas DataFrame, have a look here). Related answers on how to efficiently return a large dataframe can be found here and here as well.
Option 1
The first option is to convert the file data into JSON and then parse it into a dict. You can optionally change the orientation of the data using the orient parameter in the .to_json() method.
Note: Better not to use this option. See Updates below.
from fastapi import FastAPI
import pandas as pd
import json
app = FastAPI()
df = pd.read_csv("file.csv")
def parse_csv(df):
res = df.to_json(orient="records")
parsed = json.loads(res)
return parsed
@app.get("/questions")
def load_questions():
return parse_csv(df)
Update 1: Using .to_dict() method would be a better option, as it would return a dict directly, instead of converting the DataFrame into JSON (using df.to_json()) and then that JSON string into dict (using json.loads()), as described earlier. Example:
@app.get("/questions")
def load_questions():
return df.to_dict(orient="records")
Update 2: When using .to_dict() method and returning the dict, FastAPI, behind the scenes, automatically converts that return value into JSON using the Python standard json.dumps(), after converting it into JSON-compatible data first, using the jsonable_encoder, and then putting that JSON-compatible data inside of a JSONResponse (see this answer for more details). Thus, to avoid that extra processing, you could still use the .to_json() method, but this time, put the JSON string in a custom Response and return it directly, as shown below:
from fastapi import Response
@app.get("/questions")
def load_questions():
return Response(df.to_json(orient="records"), media_type="application/json")
Option 2
Another option is to return the data in string format, using .to_string() method.
@app.get("/questions")
def load_questions():
return df.to_string()
Option 3
You could also return the data as an HTML table, using .to_html() method.
from fastapi.responses import HTMLResponse
@app.get("/questions")
def load_questions():
return HTMLResponse(content=df.to_html(), status_code=200)
Option 4
Finally, you can always return the file as is using FastAPI's FileResponse.
from fastapi.responses import FileResponse
@app.get("/questions")
def load_questions():
return FileResponse(path="file.csv", filename="file.csv")