I am trying to install PyTorch with CUDA. I followed the instructions (installation using conda) mentioned in https://pytorch.org/get-started/locally/
conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch
The conda install command runs without giving any error:
conda list displays the following:
# Name                    Version                   Build  Channel
cudatoolkit               11.3.1               h2bc3f7f_2
pytorch                   1.11.0          py3.9_cuda11.3_cudnn8.2.0_0    pytorch
pytorch-mutex             1.0                        cuda    pytorch
torch                     1.10.2                   pypi_0    pypi
torchaudio                0.11.0               py39_cu113    pytorch
torchvision               0.11.3                   pypi_0    pypi
But when I check whether GPU driver and CUDA is enabled and accessible by PyTorch
torch.cuda.is_available()
returns false.
Prior to Pytorch installation, I checked and confirmed the pre-requisites mentioned in
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#system-requirements https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#pre-installation-actions
Here are my ubuntu server details:
Environment:
- OS/kernel:
Ubuntu 18.04.6 LTS (GNU/Linux 4.15.0-154-generic x86_64)
Footnote under the table: Table 1. Native Linux Distribution Support in CUDA 11.6 mentions
For Ubuntu LTS on x86-64, the Server LTS kernel (e.g. 4.15.x for 18.04) is supported in CUDA 11.6.
- GCC
gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0
- GLIBC
ldd (Ubuntu GLIBC 2.27-3ubuntu1.5) 2.27
GPU
GeForce GTX 1080 Ti
Kernel headers and development packages
$ uname -r
4.15.0-176-generic
As per my understanding, conda pytorch installation with CUDA will install the CUDA driver too.
I am not sure where did I went wrong. Thanks in advance.
EDIT:
$ nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2017 NVIDIA Corporation
Built on Fri_Nov__3_21:07:56_CDT_2017
Cuda compilation tools, release 9.1, V9.1.85
nvcc shows CUDA version 9.1
whereas
$ nvidia-smi
Wed May 11 06:44:31 2022
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 410.104      Driver Version: 410.104      CUDA Version: 10.0     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  GeForce GTX 108...  Off  | 00000000:05:00.0 Off |                  N/A |
| 25%   40C    P8    11W / 250W |     18MiB / 11177MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
|   1  GeForce GTX 108...  Off  | 00000000:06:00.0 Off |                  N/A |
| 25%   40C    P8    11W / 250W |      2MiB / 11178MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
|   2  GeForce GTX 108...  Off  | 00000000:09:00.0 Off |                  N/A |
| 25%   35C    P8    11W / 250W |      2MiB / 11178MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID   Type   Process name                             Usage      |
|=============================================================================|
|    0      4119      G   /usr/lib/xorg/Xorg                             9MiB |
|    0      4238      G   /usr/bin/gnome-shell                           6MiB |
+-----------------------------------------------------------------------------+
nvidia-smi shows CUDA version 10.0
https://varhowto.com/check-cuda-version/
This article mentions that nvcc refers to CUDA-toolkit whereas nvidia-smi refers to NVIDIA driver.
Q1: Does it shows that there are two different CUDA installation at the system wide level?
Nvidia Cudatoolkit vs Conda Cudatoolkit
The CUDA toolkit (version 11.3.1) I am installing in my conda environment is different from the one installed as system wide level (which is shown by the output of nvcc and nvidia-smi).
Q2: As per the above stackoverflow thread answer, they can be separate. Or is it the reason for my failure to install cuda locally?
 
     
    