Introduction 
'Tauberian' refers to a class of theorems with many applications. The full scope of Tauberian theorems is too large to cover here.
We prove here only a particular Tauberian theorem due originally to Hardy , Littlewood  and Karamata , which is useful in analytic combinatorics.
Theorem 
Theorem from Feller.[ 1]  
If
  
    
      
        f 
        ( 
        x 
        ) 
        = 
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          a 
          
            n 
           
         
        
          x 
          
            n 
           
         
        ∼ 
        
          
            1 
            
              ( 
              1 
              − 
              x 
              
                ) 
                
                  ρ 
                 
               
             
           
         
        L 
        
          ( 
          
            
              1 
              
                1 
                − 
                x 
               
             
           
          ) 
         
         
        ( 
        x 
        → 
        
          1 
          
            − 
           
         
        ) 
       
     
    {\displaystyle f(x)=\sum _{n=0}^{\infty }a_{n}x^{n}\sim {\frac {1}{(1-x)^{\rho }}}L\left({\frac {1}{1-x}}\right)\qquad (x\to 1^{-})} 
   
  
where the sequence 
  
    
      
        { 
        
          a 
          
            n 
           
         
        } 
       
     
    {\displaystyle \{a_{n}\}} 
   
   is monotone (always non-decreasing or always non-increasing), 
  
    
      
        0 
        < 
        ρ 
        < 
        ∞ 
       
     
    {\displaystyle 0<\rho <\infty } 
   
   and 
  
    
      
        
          lim 
          
            x 
            → 
            ∞ 
           
         
        
          
            
              L 
              ( 
              c 
              x 
              ) 
             
            
              L 
              ( 
              x 
              ) 
             
           
         
        = 
        1 
       
     
    {\displaystyle \lim _{x\to \infty }{\frac {L(cx)}{L(x)}}=1} 
   
   then
  
    
      
        
          a 
          
            n 
           
         
        ∼ 
        
          
            
              n 
              
                ρ 
                − 
                1 
               
             
            
              Γ 
              ( 
              ρ 
              ) 
             
           
         
        L 
        ( 
        n 
        ) 
         
        ( 
        n 
        → 
        ∞ 
        ) 
       
     
    {\displaystyle a_{n}\sim {\frac {n^{\rho -1}}{\Gamma (\rho )}}L(n)\qquad (n\to \infty )} 
   
  
Proof 
Proof from Feller.[ 2]  
We express our theorem in terms of a measure  
  
    
      
        U 
       
     
    {\displaystyle U} 
   
   with a density function 
  
    
      
        u 
        ( 
        x 
        ) 
        = 
        
          a 
          
            n 
           
         
         
        ( 
        n 
        ≤ 
        x 
        < 
        n 
        + 
        1 
        ) 
       
     
    {\displaystyle u(x)=a_{n}\quad (n\leq x<n+1)} 
   
   such that 
  
    
      
        U 
        ( 
        n 
        ) 
        = 
        
          ∫ 
          
            0 
           
          
            n 
           
         
        u 
        ( 
        x 
        ) 
        d 
        x 
        = 
        
          ∑ 
          
            i 
            = 
            0 
           
          
            n 
            − 
            1 
           
         
        
          a 
          
            i 
           
         
       
     
    {\displaystyle U(n)=\int _{0}^{n}u(x)dx=\sum _{i=0}^{n-1}a_{i}} 
   
  . 
The Laplace transform  of 
  
    
      
        U 
       
     
    {\displaystyle U} 
   
   is 
  
    
      
        ω 
        ( 
        λ 
        ) 
        = 
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        
          e 
          
            − 
            λ 
            x 
           
         
        u 
        ( 
        x 
        ) 
        d 
        x 
        = 
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          ∫ 
          
            n 
           
          
            n 
            + 
            1 
           
         
        u 
        ( 
        x 
        ) 
        
          e 
          
            − 
            λ 
            x 
           
         
        d 
        x 
        = 
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          a 
          
            n 
           
         
        
          ∫ 
          
            n 
           
          
            n 
            + 
            1 
           
         
        
          e 
          
            − 
            λ 
            x 
           
         
        d 
        x 
        = 
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          a 
          
            n 
           
         
        
          
            1 
            λ 
           
         
        ( 
        
          e 
          
            − 
            n 
            λ 
           
         
        − 
        
          e 
          
            − 
            ( 
            n 
            + 
            1 
            ) 
            λ 
           
         
        ) 
        = 
        
          
            
              1 
              − 
              
                e 
                
                  − 
                  λ 
                 
               
             
            λ 
           
         
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          a 
          
            n 
           
         
        
          e 
          
            − 
            n 
            λ 
           
         
       
     
    {\displaystyle \omega (\lambda )=\int _{0}^{\infty }e^{-\lambda x}u(x)dx=\sum _{n=0}^{\infty }\int _{n}^{n+1}u(x)e^{-\lambda x}dx=\sum _{n=0}^{\infty }a_{n}\int _{n}^{n+1}e^{-\lambda x}dx=\sum _{n=0}^{\infty }a_{n}{\frac {1}{\lambda }}(e^{-n\lambda }-e^{-(n+1)\lambda })={\frac {1-e^{-\lambda }}{\lambda }}\sum _{n=0}^{\infty }a_{n}e^{-n\lambda }} 
   
 [ 3]  
By the power series expansion of 
  
    
      
        e 
       
     
    {\displaystyle e} 
   
  , as 
  
    
      
        λ 
        → 
        0 
       
     
    {\displaystyle \lambda \to 0} 
   
  , 
  
    
      
        
          
            
              1 
              − 
              
                e 
                
                  − 
                  λ 
                 
               
             
            λ 
           
         
        = 
        
          
            
              λ 
              + 
              o 
              ( 
              λ 
              ) 
             
            λ 
           
         
        ∼ 
        1 
       
     
    {\displaystyle {\frac {1-e^{-\lambda }}{\lambda }}={\frac {\lambda +o(\lambda )}{\lambda }}\sim 1} 
   
  . 
Therefore, 
  
    
      
        ω 
        ( 
        λ 
        ) 
        ∼ 
        f 
        ( 
        
          e 
          
            − 
            λ 
           
         
        ) 
        ∼ 
        
          
            1 
            
              ( 
              1 
              − 
              
                e 
                
                  − 
                  λ 
                 
               
              
                ) 
                
                  ρ 
                 
               
             
           
         
        L 
        
          ( 
          
            
              1 
              
                1 
                − 
                
                  e 
                  
                    − 
                    λ 
                   
                 
               
             
           
          ) 
         
        ∼ 
        
          
            1 
            
              λ 
              
                ρ 
               
             
           
         
        L 
        
          ( 
          
            
              1 
              λ 
             
           
          ) 
         
       
     
    {\displaystyle \omega (\lambda )\sim f(e^{-\lambda })\sim {\frac {1}{(1-e^{-\lambda })^{\rho }}}L\left({\frac {1}{1-e^{-\lambda }}}\right)\sim {\frac {1}{\lambda ^{\rho }}}L\left({\frac {1}{\lambda }}\right)} 
   
   as 
  
    
      
        λ 
        → 
        0 
       
     
    {\displaystyle \lambda \to 0} 
   
  . 
  
    
      
        
          
            
              ω 
              ( 
              
                
                  λ 
                  x 
                 
               
              ) 
             
            
              ω 
              ( 
              
                
                  1 
                  x 
                 
               
              ) 
             
           
         
        ∼ 
        
          
            1 
            
              λ 
              
                ρ 
               
             
           
         
        
          
            
              L 
              ( 
              
                
                  x 
                  λ 
                 
               
              ) 
             
            
              L 
              ( 
              x 
              ) 
             
           
         
        ∼ 
        
          
            1 
            
              λ 
              
                ρ 
               
             
           
         
       
     
    {\displaystyle {\frac {\omega ({\frac {\lambda }{x}})}{\omega ({\frac {1}{x}})}}\sim {\frac {1}{\lambda ^{\rho }}}{\frac {L({\frac {x}{\lambda }})}{L(x)}}\sim {\frac {1}{\lambda ^{\rho }}}} 
   
   as 
  
    
      
        x 
        → 
        ∞ 
       
     
    {\displaystyle x\to \infty } 
   
  .[ 4]  
  
    
      
        
          
            1 
            
              λ 
              
                ρ 
               
             
           
         
       
     
    {\displaystyle {\frac {1}{\lambda ^{\rho }}}} 
   
   is the Laplace transform of 
  
    
      
        
          
            
              y 
              
                ρ 
                − 
                1 
               
             
            
              Γ 
              ( 
              ρ 
              ) 
             
           
         
       
     
    {\displaystyle {\frac {y^{\rho -1}}{\Gamma (\rho )}}} 
   
  . To express this in terms of the measure 
  
    
      
        
          
            
              U 
              ( 
              x 
              y 
              ) 
             
            
              ω 
              ( 
              
                
                  1 
                  x 
                 
               
              ) 
             
           
         
       
     
    {\displaystyle {\frac {U(xy)}{\omega ({\frac {1}{x}})}}} 
   
  , we integrate the latter to get 
  
    
      
        
          
            
              y 
              
                ρ 
               
             
            
              ρ 
              Γ 
              ( 
              ρ 
              ) 
             
           
         
        = 
        
          
            
              y 
              
                ρ 
               
             
            
              Γ 
              ( 
              ρ 
              + 
              1 
              ) 
             
           
         
       
     
    {\displaystyle {\frac {y^{\rho }}{\rho \Gamma (\rho )}}={\frac {y^{\rho }}{\Gamma (\rho +1)}}} 
   
  . 
We use the continuity theorem  to show that this implies 
  
    
      
        
          
            
              U 
              ( 
              x 
              y 
              ) 
             
            
              ω 
              ( 
              
                
                  1 
                  x 
                 
               
              ) 
             
           
         
        ∼ 
        
          
            
              y 
              
                ρ 
               
             
            
              Γ 
              ( 
              ρ 
              + 
              1 
              ) 
             
           
         
       
     
    {\displaystyle {\frac {U(xy)}{\omega ({\frac {1}{x}})}}\sim {\frac {y^{\rho }}{\Gamma (\rho +1)}}} 
   
  , or (setting 
  
    
      
        y 
        = 
        1 
       
     
    {\displaystyle y=1} 
   
  ) 
  
    
      
        U 
        ( 
        x 
        ) 
        ∼ 
        
          
            
              ω 
              ( 
              
                
                  1 
                  x 
                 
               
              ) 
             
            
              Γ 
              ( 
              ρ 
              + 
              1 
              ) 
             
           
         
        ∼ 
        
          
            
              x 
              
                ρ 
               
             
            
              Γ 
              ( 
              ρ 
              + 
              1 
              ) 
             
           
         
        L 
        ( 
        x 
        ) 
       
     
    {\displaystyle U(x)\sim {\frac {\omega ({\frac {1}{x}})}{\Gamma (\rho +1)}}\sim {\frac {x^{\rho }}{\Gamma (\rho +1)}}L(x)} 
   
  . 
We prove  that this implies 
  
    
      
        u 
        ( 
        x 
        ) 
        ∼ 
        
          
            
              ρ 
              U 
              ( 
              x 
              ) 
             
            x 
           
         
       
     
    {\displaystyle u(x)\sim {\frac {\rho U(x)}{x}}} 
   
  . 
Therefore, 
  
    
      
        
          a 
          
            n 
           
         
        = 
        u 
        ( 
        n 
        ) 
        ∼ 
        
          
            
              ρ 
              U 
              ( 
              n 
              ) 
             
            n 
           
         
        ∼ 
        
          
            
              n 
              
                ρ 
                − 
                1 
               
             
            
              Γ 
              ( 
              ρ 
              ) 
             
           
         
        L 
        ( 
        n 
        ) 
       
     
    {\displaystyle a_{n}=u(n)\sim {\frac {\rho U(n)}{n}}\sim {\frac {n^{\rho -1}}{\Gamma (\rho )}}L(n)} 
   
  .  
Measure and probability distributions 
A measure 
  
    
      
        U 
       
     
    {\displaystyle U} 
   
   assigns a positive number to a set. It is a generalisation of concepts such as length, area or volume.
Graph of u(x) shown as a step-function in blue. There are two examples of the measure U: U(1.5) is the area under the curve in orange, U{[2.4, 2.6]} is the area under the curve in green.  
In our case, our measure is the area under the curve of the step function that takes the values of our coefficients, 
  
    
      
        u 
        ( 
        x 
        ) 
        = 
        
          a 
          
            n 
           
         
         
        ( 
        n 
        ≤ 
        x 
        < 
        n 
        + 
        1 
        ) 
       
     
    {\displaystyle u(x)=a_{n}\quad (n\leq x<n+1)} 
   
  . Therefore, 
  
    
      
        U 
        ( 
        x 
        ) 
        = 
        
          ∫ 
          
            0 
           
          
            x 
           
         
        u 
        ( 
        y 
        ) 
        d 
        y 
       
     
    {\displaystyle U(x)=\int _{0}^{x}u(y)dy} 
   
  . If 
  
    
      
        n 
       
     
    {\displaystyle n} 
   
   is an integer, 
  
    
      
        U 
        ( 
        n 
        ) 
        = 
        
          ∑ 
          
            i 
            = 
            0 
           
          
            n 
            − 
            1 
           
         
        
          a 
          
            i 
           
         
       
     
    {\displaystyle U(n)=\sum _{i=0}^{n-1}a_{i}} 
   
  . We define 
  
    
      
        U 
        { 
        I 
        } 
       
     
    {\displaystyle U\{I\}} 
   
   to be the area under the curve confined to the interval 
  
    
      
        I 
       
     
    {\displaystyle I} 
   
  . If the interval 
  
    
      
        I 
       
     
    {\displaystyle I} 
   
   is contained in the interval 
  
    
      
        ( 
        n 
        , 
        n 
        + 
        1 
        ) 
       
     
    {\displaystyle (n,n+1)} 
   
   for some 
  
    
      
        n 
       
     
    {\displaystyle n} 
   
   and 
  
    
      
        l 
       
     
    {\displaystyle l} 
   
   is the length of 
  
    
      
        I 
       
     
    {\displaystyle I} 
   
  , then 
  
    
      
        U 
        { 
        I 
        } 
        = 
        u 
        ( 
        n 
        ) 
        l 
       
     
    {\displaystyle U\{I\}=u(n)l} 
   
  .
A measure can be converted to a probability distribution 
  
    
      
        F 
        ( 
        x 
        ) 
        = 
        
          
            
              U 
              ( 
              x 
              ) 
             
            
              U 
              ( 
              + 
              ∞ 
              ) 
             
           
         
       
     
    {\displaystyle F(x)={\frac {U(x)}{U(+\infty )}}} 
   
   with density 
  
    
      
        f 
        ( 
        x 
        ) 
        = 
        u 
        ( 
        x 
        ) 
       
     
    {\displaystyle f(x)=u(x)} 
   
  , assigning a probability to how likely a random variable will take on a value less than or equal to 
  
    
      
        x 
       
     
    {\displaystyle x} 
   
  . We do this because probability distributions have two properties which we make use of in our proof.
We define 
  
    
      
        F 
        { 
        A 
        } 
       
     
    {\displaystyle F\{A\}} 
   
   to be the probability that a random variable will take on a value in the set 
  
    
      
        A 
       
     
    {\displaystyle A} 
   
  .
Property 1: Expectation or mean 
The expectation or mean of a probability distribution 
  
    
      
        F 
       
     
    {\displaystyle F} 
   
   with density 
  
    
      
        f 
       
     
    {\displaystyle f} 
   
   is calculated as 
  
    
      
        E 
        ( 
        X 
        ) 
        = 
        
          ∫ 
          
            − 
            ∞ 
           
          
            ∞ 
           
         
        x 
        f 
        ( 
        x 
        ) 
        d 
        x 
       
     
    {\displaystyle E(X)=\int _{-\infty }^{\infty }xf(x)dx} 
   
  .
We also define 
  
    
      
        E 
        ( 
        u 
        ) 
        = 
        
          ∫ 
          
            − 
            ∞ 
           
          
            ∞ 
           
         
        u 
        ( 
        x 
        ) 
        f 
        ( 
        x 
        ) 
        d 
        x 
       
     
    {\displaystyle E(u)=\int _{-\infty }^{\infty }u(x)f(x)dx} 
   
  .
Theorem 1 
Let 
  
    
      
        { 
        
          F 
          
            n 
           
         
        } 
       
     
    {\displaystyle \{F_{n}\}} 
   
   be a sequence of probability distributions with expectations 
  
    
      
        
          E 
          
            n 
           
         
       
     
    {\displaystyle E_{n}} 
   
  , if 
  
    
      
        
          F 
          
            n 
           
         
        → 
        F 
       
     
    {\displaystyle F_{n}\to F} 
   
   then 
  
    
      
        
          E 
          
            n 
           
         
        ( 
        u 
        ) 
        → 
        E 
        ( 
        u 
        ) 
       
     
    {\displaystyle E_{n}(u)\to E(u)} 
   
   for 
  
    
      
        u 
        ∈ 
        
          C 
          
            0 
           
         
        ( 
        − 
        ∞ 
        , 
        ∞ 
        ) 
       
     
    {\displaystyle u\in C_{0}(-\infty ,\infty )} 
   
  .[ 5]  
Proof 
Assume 
  
    
      
        
          F 
          
            n 
           
         
        → 
        F 
       
     
    {\displaystyle F_{n}\to F} 
   
  . Let 
  
    
      
        u 
       
     
    {\displaystyle u} 
   
   be a continuous function such that 
  
    
      
        
          | 
         
        u 
        ( 
        x 
        ) 
        
          | 
         
        < 
        M 
       
     
    {\displaystyle |u(x)|<M} 
   
   for all 
  
    
      
        x 
       
     
    {\displaystyle x} 
   
  . Let A be an interval such that 
  
    
      
        F 
        { 
        A 
        } 
        > 
        1 
        − 
        ϵ 
       
     
    {\displaystyle F\{A\}>1-\epsilon } 
   
  , and therefore, for the complement 
  
    
      
        
          A 
          ′ 
         
       
     
    {\displaystyle A'} 
   
  , 
  
    
      
        F 
        { 
        
          A 
          ′ 
         
        } 
        < 
        2 
        ϵ 
       
     
    {\displaystyle F\{A'\}<2\epsilon } 
   
   for 
  
    
      
        n 
       
     
    {\displaystyle n} 
   
   sufficiently large.  
Because 
  
    
      
        u 
       
     
    {\displaystyle u} 
   
   is continuous it is possible to partition 
  
    
      
        A 
       
     
    {\displaystyle A} 
   
   into intervals 
  
    
      
        
          I 
          
            1 
           
         
        , 
        
          I 
          
            2 
           
         
        , 
        ⋯ 
       
     
    {\displaystyle I_{1},I_{2},\cdots } 
   
   so small that 
  
    
      
        u 
       
     
    {\displaystyle u} 
   
   oscillates by less than 
  
    
      
        ϵ 
       
     
    {\displaystyle \epsilon } 
   
  .  
We can then estimate 
  
    
      
        u 
       
     
    {\displaystyle u} 
   
   in 
  
    
      
        A 
       
     
    {\displaystyle A} 
   
   by a step function 
  
    
      
        σ 
       
     
    {\displaystyle \sigma } 
   
   which assumes constant values within each 
  
    
      
        
          I 
          
            k 
           
         
       
     
    {\displaystyle I_{k}} 
   
   and such that 
  
    
      
        
          | 
         
        u 
        ( 
        x 
        ) 
        − 
        σ 
        ( 
        x 
        ) 
        
          | 
         
        < 
        ϵ 
       
     
    {\displaystyle |u(x)-\sigma (x)|<\epsilon } 
   
   for all 
  
    
      
        x 
        ∈ 
        A 
       
     
    {\displaystyle x\in A} 
   
  . We define 
  
    
      
        σ 
        ( 
        x 
        ) 
        = 
        0 
       
     
    {\displaystyle \sigma (x)=0} 
   
   for 
  
    
      
        x 
        ∈ 
        
          A 
          ′ 
         
       
     
    {\displaystyle x\in A'} 
   
  , so that 
  
    
      
        
          | 
         
        u 
        ( 
        x 
        ) 
        − 
        σ 
        ( 
        x 
        ) 
        
          | 
         
        < 
        M 
       
     
    {\displaystyle |u(x)-\sigma (x)|<M} 
   
   for 
  
    
      
        x 
        ∈ 
        
          A 
          ′ 
         
       
     
    {\displaystyle x\in A'} 
   
  .  
Therefore, 
  
    
      
        
          | 
         
        E 
        ( 
        u 
        ) 
        − 
        E 
        ( 
        σ 
        ) 
        
          | 
         
        ≤ 
        ϵ 
        F 
        { 
        A 
        } 
        + 
        M 
        F 
        { 
        
          A 
          ′ 
         
        } 
        ≤ 
        ϵ 
        + 
        M 
        ϵ 
       
     
    {\displaystyle |E(u)-E(\sigma )|\leq \epsilon F\{A\}+MF\{A'\}\leq \epsilon +M\epsilon } 
   
  .  
For sufficiently large 
  
    
      
        n 
       
     
    {\displaystyle n} 
   
  , 
  
    
      
        
          | 
         
        
          E 
          
            n 
           
         
        ( 
        u 
        ) 
        − 
        
          E 
          
            n 
           
         
        ( 
        σ 
        ) 
        
          | 
         
        ≤ 
        ϵ 
        
          F 
          
            n 
           
         
        { 
        A 
        } 
        + 
        M 
        
          F 
          
            n 
           
         
        { 
        
          A 
          ′ 
         
        } 
        ≤ 
        ϵ 
        + 
        M 
        ϵ 
       
     
    {\displaystyle |E_{n}(u)-E_{n}(\sigma )|\leq \epsilon F_{n}\{A\}+MF_{n}\{A'\}\leq \epsilon +M\epsilon } 
   
   
Because 
  
    
      
        
          E 
          
            n 
           
         
        ( 
        σ 
        ) 
        → 
        E 
        ( 
        σ 
        ) 
       
     
    {\displaystyle E_{n}(\sigma )\to E(\sigma )} 
   
   then for sufficiently large 
  
    
      
        n 
       
     
    {\displaystyle n} 
   
  , 
  
    
      
        
          | 
         
        E 
        ( 
        σ 
        ) 
        − 
        
          E 
          
            n 
           
         
        ( 
        σ 
        ) 
        
          | 
         
        < 
        ϵ 
       
     
    {\displaystyle |E(\sigma )-E_{n}(\sigma )|<\epsilon } 
   
  .  
Putting it all together,  
  
    
      
        
          | 
         
        E 
        ( 
        u 
        ) 
        − 
        
          E 
          
            n 
           
         
        ( 
        u 
        ) 
        
          | 
         
        ≤ 
        
          | 
         
        E 
        ( 
        u 
        ) 
        − 
        E 
        ( 
        σ 
        ) 
        
          | 
         
        + 
        
          | 
         
        E 
        ( 
        σ 
        ) 
        − 
        
          E 
          
            n 
           
         
        ( 
        σ 
        ) 
        
          | 
         
        + 
        
          | 
         
        
          E 
          
            n 
           
         
        ( 
        σ 
        ) 
        − 
        
          E 
          
            n 
           
         
        ( 
        u 
        ) 
        
          | 
         
        < 
        3 
        ( 
        M 
        + 
        1 
        ) 
        ϵ 
       
     
    {\displaystyle |E(u)-E_{n}(u)|\leq |E(u)-E(\sigma )|+|E(\sigma )-E_{n}(\sigma )|+|E_{n}(\sigma )-E_{n}(u)|<3(M+1)\epsilon } 
   
  
which implies 
  
    
      
        
          E 
          
            n 
           
         
        ( 
        u 
        ) 
        → 
        E 
        ( 
        u 
        ) 
       
     
    {\displaystyle E_{n}(u)\to E(u)} 
   
  .[ 6]   
Property 2: Convergence 
Lemma 1 
Let 
  
    
      
        
          a 
          
            1 
           
         
        , 
        
          a 
          
            2 
           
         
        , 
        ⋯ 
       
     
    {\displaystyle a_{1},a_{2},\cdots } 
   
   be an arbitrary sequence of points. Every sequence of numerical functions contains a subsequence that converges for all 
  
    
      
        
          a 
          
            i 
           
         
       
     
    {\displaystyle a_{i}} 
   
  .[ 7]   
Row 4, 
  
    
      
        
          u 
          
            n 
           
          
            4 
           
         
       
     
    {\displaystyle u_{n}^{4}} 
   
  , (in blue)  is contained in the previous 3 rows, contains all the subsequent rows and converges at 
  
    
      
        
          a 
          
            4 
           
         
       
     
    {\displaystyle a_{4}} 
   
  . All 
  
    
      
        
          u 
          
            4 
           
          
            4 
           
         
        , 
        
          u 
          
            5 
           
          
            5 
           
         
        , 
        ⋯ 
       
     
    {\displaystyle u_{4}^{4},u_{5}^{5},\cdots } 
   
   (in green) are contained in 
  
    
      
        
          u 
          
            n 
           
          
            4 
           
         
       
     
    {\displaystyle u_{n}^{4}} 
   
   and therefore converge for 
  
    
      
        
          a 
          
            4 
           
         
       
     
    {\displaystyle a_{4}} 
   
  . This argument can be repeated for all 
  
    
      
        
          a 
          
            k 
           
         
       
     
    {\displaystyle a_{k}} 
   
  . 
 
  
    
      
        
          u 
          
            1 
           
          
            1 
           
         
       
     
    {\displaystyle u_{1}^{1}} 
   
  
  
    
      
        
          u 
          
            2 
           
          
            1 
           
         
       
     
    {\displaystyle u_{2}^{1}} 
   
  
  
    
      
        
          u 
          
            3 
           
          
            1 
           
         
       
     
    {\displaystyle u_{3}^{1}} 
   
  
  
    
      
        
          u 
          
            4 
           
          
            1 
           
         
       
     
    {\displaystyle u_{4}^{1}} 
   
  
  
    
      
        
          u 
          
            5 
           
          
            1 
           
         
       
     
    {\displaystyle u_{5}^{1}} 
   
  
  
    
      
        ⋯ 
       
     
    {\displaystyle \cdots } 
   
  
 
  
    
      
        
          u 
          
            1 
           
          
            2 
           
         
       
     
    {\displaystyle u_{1}^{2}} 
   
  
  
    
      
        
          u 
          
            2 
           
          
            2 
           
         
       
     
    {\displaystyle u_{2}^{2}} 
   
  
  
    
      
        
          u 
          
            3 
           
          
            2 
           
         
       
     
    {\displaystyle u_{3}^{2}} 
   
  
  
    
      
        
          u 
          
            4 
           
          
            2 
           
         
       
     
    {\displaystyle u_{4}^{2}} 
   
  
  
    
      
        
          u 
          
            5 
           
          
            2 
           
         
       
     
    {\displaystyle u_{5}^{2}} 
   
  
  
    
      
        ⋯ 
       
     
    {\displaystyle \cdots } 
   
  
 
  
    
      
        
          u 
          
            1 
           
          
            3 
           
         
       
     
    {\displaystyle u_{1}^{3}} 
   
  
  
    
      
        
          u 
          
            2 
           
          
            3 
           
         
       
     
    {\displaystyle u_{2}^{3}} 
   
  
  
    
      
        
          u 
          
            3 
           
          
            3 
           
         
       
     
    {\displaystyle u_{3}^{3}} 
   
  
  
    
      
        
          u 
          
            4 
           
          
            3 
           
         
       
     
    {\displaystyle u_{4}^{3}} 
   
  
  
    
      
        
          u 
          
            5 
           
          
            3 
           
         
       
     
    {\displaystyle u_{5}^{3}} 
   
  
  
    
      
        ⋯ 
       
     
    {\displaystyle \cdots } 
   
  
 
  
    
      
        
          
            u 
            
              1 
             
            
              4 
             
           
         
       
     
    {\displaystyle \color {blue}u_{1}^{4}} 
   
  
  
    
      
        
          
            u 
            
              2 
             
            
              4 
             
           
         
       
     
    {\displaystyle \color {blue}u_{2}^{4}} 
   
  
  
    
      
        
          
            u 
            
              3 
             
            
              4 
             
           
         
       
     
    {\displaystyle \color {blue}u_{3}^{4}} 
   
  
  
    
      
        
          
            u 
            
              4 
             
            
              4 
             
           
         
       
     
    {\displaystyle \color {green}u_{4}^{4}} 
   
  
  
    
      
        
          
            u 
            
              5 
             
            
              4 
             
           
         
       
     
    {\displaystyle \color {blue}u_{5}^{4}} 
   
  
  
    
      
        ⋯ 
       
     
    {\displaystyle \cdots } 
   
  
 
  
    
      
        
          u 
          
            1 
           
          
            5 
           
         
       
     
    {\displaystyle u_{1}^{5}} 
   
  
  
    
      
        
          u 
          
            2 
           
          
            5 
           
         
       
     
    {\displaystyle u_{2}^{5}} 
   
  
  
    
      
        
          u 
          
            3 
           
          
            5 
           
         
       
     
    {\displaystyle u_{3}^{5}} 
   
  
  
    
      
        
          u 
          
            4 
           
          
            5 
           
         
       
     
    {\displaystyle u_{4}^{5}} 
   
  
  
    
      
        
          
            u 
            
              5 
             
            
              5 
             
           
         
       
     
    {\displaystyle \color {green}u_{5}^{5}} 
   
  
  
    
      
        ⋯ 
       
     
    {\displaystyle \cdots } 
   
  
 
  
    
      
        ⋮ 
       
     
    {\displaystyle \vdots } 
   
  
  
    
      
        ⋮ 
       
     
    {\displaystyle \vdots } 
   
  
  
    
      
        ⋮ 
       
     
    {\displaystyle \vdots } 
   
  
  
    
      
        ⋮ 
       
     
    {\displaystyle \vdots } 
   
  
  
    
      
        ⋮ 
       
     
    {\displaystyle \vdots } 
   
  
  
    
      
        ⋱ 
       
     
    {\displaystyle \ddots } 
   
  
 
Proof 
For a sequence of functions 
  
    
      
        { 
        
          u 
          
            n 
           
         
        } 
       
     
    {\displaystyle \{u_{n}\}} 
   
   we can find a subsequence 
  
    
      
        
          u 
          
            1 
           
          
            1 
           
         
        , 
        
          u 
          
            2 
           
          
            1 
           
         
        , 
        ⋯ 
       
     
    {\displaystyle u_{1}^{1},u_{2}^{1},\cdots } 
   
   that converges at 
  
    
      
        
          a 
          
            1 
           
         
       
     
    {\displaystyle a_{1}} 
   
  . Out of the subsequence 
  
    
      
        
          u 
          
            1 
           
          
            1 
           
         
        , 
        
          u 
          
            2 
           
          
            1 
           
         
        , 
        ⋯ 
       
     
    {\displaystyle u_{1}^{1},u_{2}^{1},\cdots } 
   
   we find a subsequence 
  
    
      
        
          u 
          
            1 
           
          
            2 
           
         
        , 
        
          u 
          
            2 
           
          
            2 
           
         
        , 
        ⋯ 
       
     
    {\displaystyle u_{1}^{2},u_{2}^{2},\cdots } 
   
   that converges at 
  
    
      
        
          a 
          
            2 
           
         
       
     
    {\displaystyle a_{2}} 
   
  . Continue in this way to find sequences 
  
    
      
        { 
        
          u 
          
            n 
           
          
            k 
           
         
        } 
       
     
    {\displaystyle \{u_{n}^{k}\}} 
   
   that converge for the point 
  
    
      
        
          a 
          
            k 
           
         
       
     
    {\displaystyle a_{k}} 
   
  , but not necessarily any of the previous points.  
Construct a diagonal sequence 
  
    
      
        
          u 
          
            1 
           
          
            1 
           
         
        , 
        
          u 
          
            2 
           
          
            2 
           
         
        , 
        
          u 
          
            3 
           
          
            3 
           
         
        , 
        ⋯ 
       
     
    {\displaystyle u_{1}^{1},u_{2}^{2},u_{3}^{3},\cdots } 
   
  . This sequence converges for all 
  
    
      
        
          a 
          
            k 
           
         
       
     
    {\displaystyle a_{k}} 
   
   because all but the first 
  
    
      
        k 
        − 
        1 
       
     
    {\displaystyle k-1} 
   
   terms are contained in 
  
    
      
        { 
        
          u 
          
            n 
           
          
            k 
           
         
        } 
       
     
    {\displaystyle \{u_{n}^{k}\}} 
   
  . This is true for all 
  
    
      
        k 
       
     
    {\displaystyle k} 
   
  .[ 8]   
Theorem 2 
Every sequence 
  
    
      
        { 
        
          F 
          
            n 
           
         
        } 
       
     
    {\displaystyle \{F_{n}\}} 
   
   of probability distributions possesses a subsequence 
  
    
      
        
          F 
          
            
              n 
              
                1 
               
             
           
         
        , 
        
          F 
          
            
              n 
              
                2 
               
             
           
         
        , 
        ⋯ 
       
     
    {\displaystyle F_{n_{1}},F_{n_{2}},\cdots } 
   
   that converges to a probability distribution 
  
    
      
        F 
       
     
    {\displaystyle F} 
   
  .[ 9]  
Proof 
By lemma 1, we can find a subsequence 
  
    
      
        { 
        
          F 
          
            
              n 
              
                k 
               
             
           
         
        } 
       
     
    {\displaystyle \{F_{n_{k}}\}} 
   
   that converges for all points 
  
    
      
        
          a 
          
            i 
           
         
       
     
    {\displaystyle a_{i}} 
   
  of a dense  sequence. Denote the limit the sequence converges for each 
  
    
      
        
          a 
          
            i 
           
         
       
     
    {\displaystyle a_{i}} 
   
   by 
  
    
      
        G 
        ( 
        
          a 
          
            i 
           
         
        ) 
       
     
    {\displaystyle G(a_{i})} 
   
  . For 
  
    
      
        x 
       
     
    {\displaystyle x} 
   
   that are not one of 
  
    
      
        
          a 
          
            i 
           
         
       
     
    {\displaystyle a_{i}} 
   
  , 
  
    
      
        G 
        ( 
        x 
        ) 
       
     
    {\displaystyle G(x)} 
   
   is the greatest lower bound of all 
  
    
      
        G 
        ( 
        
          a 
          
            i 
           
         
        ) 
       
     
    {\displaystyle G(a_{i})} 
   
   for 
  
    
      
        
          a 
          
            i 
           
         
        > 
        x 
       
     
    {\displaystyle a_{i}>x} 
   
  .  
  
    
      
        G 
       
     
    {\displaystyle G} 
   
   is increasing between 0 and 1. If we define 
  
    
      
        F 
       
     
    {\displaystyle F} 
   
   to be equal to 
  
    
      
        G 
       
     
    {\displaystyle G} 
   
   at all points of continuity and 
  
    
      
        F 
        ( 
        x 
        ) 
        = 
        G 
        ( 
        x 
        + 
        ) 
       
     
    {\displaystyle F(x)=G(x+)} 
   
   if 
  
    
      
        x 
       
     
    {\displaystyle x} 
   
   is a point of discontinuity. For a point of continuity 
  
    
      
        x 
       
     
    {\displaystyle x} 
   
  , we can find two points such that 
  
    
      
        
          a 
          
            i 
           
         
        < 
        x 
        < 
        
          a 
          
            j 
           
         
       
     
    {\displaystyle a_{i}<x<a_{j}} 
   
  , 
  
    
      
        G 
        ( 
        
          a 
          
            j 
           
         
        ) 
        − 
        G 
        ( 
        
          a 
          
            i 
           
         
        ) 
        < 
        ϵ 
       
     
    {\displaystyle G(a_{j})-G(a_{i})<\epsilon } 
   
   and 
  
    
      
        G 
        ( 
        
          a 
          
            i 
           
         
        ) 
        ≤ 
        F 
        ( 
        x 
        ) 
        ≤ 
        G 
        ( 
        
          a 
          
            j 
           
         
        ) 
       
     
    {\displaystyle G(a_{i})\leq F(x)\leq G(a_{j})} 
   
  . 
  
    
      
        
          F 
          
            n 
           
         
       
     
    {\displaystyle F_{n}} 
   
   are monotone, therefore 
  
    
      
        
          F 
          
            
              n 
              
                k 
               
             
           
         
        ( 
        
          a 
          
            i 
           
         
        ) 
        ≤ 
        
          F 
          
            
              n 
              
                k 
               
             
           
         
        ( 
        x 
        ) 
        ≤ 
        
          F 
          
            
              n 
              
                k 
               
             
           
         
        ( 
        
          a 
          
            j 
           
         
        ) 
       
     
    {\displaystyle F_{n_{k}}(a_{i})\leq F_{n_{k}}(x)\leq F_{n_{k}}(a_{j})} 
   
  . The limit of 
  
    
      
        { 
        
          F 
          
            
              n 
              
                k 
               
             
           
         
        } 
       
     
    {\displaystyle \{F_{n_{k}}\}} 
   
   differs from 
  
    
      
        F 
        ( 
        x 
        ) 
       
     
    {\displaystyle F(x)} 
   
   by no more than 
  
    
      
        ϵ 
       
     
    {\displaystyle \epsilon } 
   
  , so 
  
    
      
        
          F 
          
            
              n 
              
                k 
               
             
           
         
        → 
        F 
        ( 
        x 
        ) 
       
     
    {\displaystyle F_{n_{k}}\to F(x)} 
   
   as 
  
    
      
        k 
        → 
        ∞ 
       
     
    {\displaystyle k\to \infty } 
   
   for all points of continuity.[ 10]  
Theorem 3 
If 
  
    
      
        
          F 
          
            n 
           
         
        → 
        F 
       
     
    {\displaystyle F_{n}\to F} 
   
   then the limit of every subsequence equals 
  
    
      
        F 
       
     
    {\displaystyle F} 
   
  .[ 11]  
Proof 
By the definition of limits, 
  
    
      
        
          | 
         
        
          F 
          
            n 
           
         
        − 
        F 
        
          | 
         
        < 
        ϵ 
       
     
    {\displaystyle |F_{n}-F|<\epsilon } 
   
   for 
  
    
      
        n 
        > 
        N 
       
     
    {\displaystyle n>N} 
   
  . Therefore, for any subsequence 
  
    
      
        { 
        
          F 
          
            
              n 
              
                k 
               
             
           
         
        } 
       
     
    {\displaystyle \{F_{n_{k}}\}} 
   
  , 
  
    
      
        
          | 
         
        
          F 
          
            
              n 
              
                k 
               
             
           
         
        − 
        F 
        
          | 
         
        < 
        ϵ 
       
     
    {\displaystyle |F_{n_{k}}-F|<\epsilon } 
   
   when 
  
    
      
        
          n 
          
            k 
           
         
        ≥ 
        n 
        > 
        N 
       
     
    {\displaystyle n_{k}\geq n>N} 
   
  .[ 12]   
The Laplace Transform can be seen as the continuous analogue of the power series, where 
  
    
      
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          a 
          
            n 
           
         
        
          x 
          
            n 
           
         
       
     
    {\displaystyle \sum _{n=0}^{\infty }a_{n}x^{n}} 
   
   becomes 
  
    
      
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        a 
        ( 
        x 
        ) 
        
          e 
          
            − 
            λ 
            x 
           
         
        d 
        x 
       
     
    {\displaystyle \int _{0}^{\infty }a(x)e^{-\lambda x}dx} 
   
  . 
  
    
      
        
          x 
          
            n 
           
         
       
     
    {\displaystyle x^{n}} 
   
   is replaced by 
  
    
      
        
          e 
          
            − 
            λ 
            x 
           
         
       
     
    {\displaystyle e^{-\lambda x}} 
   
   because it is easier to integrate.
We define the Laplace transform of a probability distribution 
  
    
      
        F 
       
     
    {\displaystyle F} 
   
   as 
  
    
      
        ϕ 
        ( 
        λ 
        ) 
        = 
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        
          e 
          
            − 
            λ 
            x 
           
         
        F 
        { 
        d 
        x 
        } 
       
     
    {\displaystyle \phi (\lambda )=\int _{0}^{\infty }e^{-\lambda x}F\{dx\}} 
   
  .
If 
  
    
      
        F 
       
     
    {\displaystyle F} 
   
   has the density 
  
    
      
        f 
       
     
    {\displaystyle f} 
   
   then we can also define the Laplace tranform of 
  
    
      
        F 
       
     
    {\displaystyle F} 
   
   as 
  
    
      
        ϕ 
        ( 
        λ 
        ) 
        = 
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        
          e 
          
            − 
            λ 
            x 
           
         
        f 
        ( 
        x 
        ) 
        d 
        x 
       
     
    {\displaystyle \phi (\lambda )=\int _{0}^{\infty }e^{-\lambda x}f(x)dx} 
   
  .[ 13]  
If our density 
  
    
      
        f 
       
     
    {\displaystyle f} 
   
   is zero for 
  
    
      
        x 
        < 
        0 
       
     
    {\displaystyle x<0} 
   
  , we can also see that the Laplace transform is equivalent to the expectation 
  
    
      
        E 
        ( 
        
          e 
          
            − 
            λ 
            X 
           
         
        ) 
        = 
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        
          e 
          
            − 
            λ 
            x 
           
         
        f 
        ( 
        x 
        ) 
        d 
        x 
       
     
    {\displaystyle E(e^{-\lambda X})=\int _{0}^{\infty }e^{-\lambda x}f(x)dx} 
   
  .[ 14]  
Theorem 4 
Distinct probability distributions have distinct Laplace transforms.[ 15]   
Continuity theorem 
Theorem 5 
Let 
  
    
      
        { 
        
          F 
          
            n 
           
         
        } 
       
     
    {\displaystyle \{F_{n}\}} 
   
   be a sequence of probability distributions with Laplace transforms 
  
    
      
        
          ϕ 
          
            n 
           
         
       
     
    {\displaystyle \phi _{n}} 
   
  , then 
  
    
      
        
          ϕ 
          
            n 
           
         
        → 
        ϕ 
       
     
    {\displaystyle \phi _{n}\to \phi } 
   
   implies 
  
    
      
        
          F 
          
            n 
           
         
        → 
        F 
       
     
    {\displaystyle F_{n}\to F} 
   
  .[ 16]  
Proof 
Because the Laplace transforms 
  
    
      
        
          ϕ 
          
            n 
           
         
        , 
        ϕ 
       
     
    {\displaystyle \phi _{n},\phi } 
   
   are equivalent to expectations, we can use theorem 1  with 
  
    
      
        u 
        ( 
        x 
        ) 
        = 
        
          e 
          
            − 
            λ 
            x 
           
         
       
     
    {\displaystyle u(x)=e^{-\lambda x}} 
   
   to prove that 
  
    
      
        
          F 
          
            n 
           
         
        → 
        F 
       
     
    {\displaystyle F_{n}\to F} 
   
   implies 
  
    
      
        
          ϕ 
          
            n 
           
         
        → 
        ϕ 
       
     
    {\displaystyle \phi _{n}\to \phi } 
   
  .  
By theorem 2 , if 
  
    
      
        { 
        
          F 
          
            
              n 
              
                k 
               
             
           
         
        } 
       
     
    {\displaystyle \{F_{n_{k}}\}} 
   
   is a subsequence that converges to 
  
    
      
        
          F 
          ′ 
         
       
     
    {\displaystyle F'} 
   
  , then the Laplace transforms of 
  
    
      
        
          F 
          
            
              n 
              
                k 
               
             
           
         
       
     
    {\displaystyle F_{n_{k}}} 
   
   converge to the Laplace transform 
  
    
      
        
          ϕ 
          ′ 
         
       
     
    {\displaystyle \phi '} 
   
   of 
  
    
      
        
          F 
          ′ 
         
       
     
    {\displaystyle F'} 
   
  .  
By assumption in the theorem, the Laplace transforms 
  
    
      
        
          ϕ 
          
            n 
           
         
       
     
    {\displaystyle \phi _{n}} 
   
   converge to 
  
    
      
        ϕ 
       
     
    {\displaystyle \phi } 
   
  , then by theorem 3  all its subsequences also converge to 
  
    
      
        ϕ 
       
     
    {\displaystyle \phi } 
   
   so that 
  
    
      
        ϕ 
        = 
        
          ϕ 
          ′ 
         
       
     
    {\displaystyle \phi =\phi '} 
   
  .  
Because Laplace transforms  are unique, 
  
    
      
        
          F 
          ′ 
         
        = 
        F 
       
     
    {\displaystyle F'=F} 
   
  . But this will be true for every subsequence so by theorem 3  
  
    
      
        
          F 
          
            n 
           
         
        → 
        F 
       
     
    {\displaystyle F_{n}\to F} 
   
  .[ 17]   
This proof can be extended more generally to measure by defining our probability distribution in terms of the measure 
  
    
      
        
          U 
          
            n 
           
         
       
     
    {\displaystyle U_{n}} 
   
  , 
  
    
      
        
          F 
          
            n 
           
         
        = 
        
          
            1 
            
              
                ϕ 
                
                  n 
                 
               
              ( 
              λ 
              ) 
             
           
         
        
          e 
          
            − 
            λ 
            x 
           
         
        
          U 
          
            n 
           
         
        { 
        d 
        x 
        } 
       
     
    {\displaystyle F_{n}={\frac {1}{\phi _{n}(\lambda )}}e^{-\lambda x}U_{n}\{dx\}} 
   
  .[ 18]  
Asymptotics of the density function 
Theorem 6 
If 
  
    
      
        U 
       
     
    {\displaystyle U} 
   
   has a monotone density 
  
    
      
        u 
       
     
    {\displaystyle u} 
   
   and 
  
    
      
        ρ 
        > 
        0 
       
     
    {\displaystyle \rho >0} 
   
   then 
  
    
      
        u 
        ( 
        x 
        ) 
        ∼ 
        
          
            
              ρ 
              U 
              ( 
              x 
              ) 
             
            x 
           
         
       
     
    {\displaystyle u(x)\sim {\frac {\rho U(x)}{x}}} 
   
   as 
  
    
      
        x 
        → 
        ∞ 
       
     
    {\displaystyle x\to \infty } 
   
  .[ 19]  
Proof 
For 
  
    
      
        0 
        < 
        a 
        < 
        b 
       
     
    {\displaystyle 0<a<b} 
   
  ,  
  
    
      
        
          ∫ 
          
            a 
           
          
            b 
           
         
        
          
            
              u 
              ( 
              t 
              y 
              ) 
              t 
             
            
              U 
              ( 
              t 
              ) 
             
           
         
        d 
        y 
        = 
        
          
            
              U 
              ( 
              t 
              b 
              ) 
              − 
              U 
              ( 
              t 
              a 
              ) 
             
            
              U 
              ( 
              t 
              ) 
             
           
         
       
     
    {\displaystyle \int _{a}^{b}{\frac {u(ty)t}{U(t)}}dy={\frac {U(tb)-U(ta)}{U(t)}}} 
   
  . 
As 
  
    
      
        t 
        → 
        ∞ 
       
     
    {\displaystyle t\to \infty } 
   
   the right side tends to 
  
    
      
        
          b 
          
            ρ 
           
         
        − 
        
          a 
          
            ρ 
           
         
       
     
    {\displaystyle b^{\rho }-a^{\rho }} 
   
  . By theorem 2, there exists a sequence 
  
    
      
        { 
        
          t 
          
            k 
           
         
        } 
        → 
        ∞ 
       
     
    {\displaystyle \{t_{k}\}\to \infty } 
   
   such that  
  
    
      
        
          
            
              u 
              ( 
              t 
              y 
              ) 
              t 
             
            
              U 
              ( 
              t 
              ) 
             
           
         
        → 
        ψ 
        ( 
        y 
        ) 
       
     
    {\displaystyle {\frac {u(ty)t}{U(t)}}\to \psi (y)} 
   
  
Therefore  
  
    
      
        
          ∫ 
          
            a 
           
          
            b 
           
         
        ψ 
        ( 
        x 
        ) 
        d 
        x 
        = 
        
          b 
          
            ρ 
           
         
        − 
        
          a 
          
            ρ 
           
         
       
     
    {\displaystyle \int _{a}^{b}\psi (x)dx=b^{\rho }-a^{\rho }} 
   
  
which implies 
  
    
      
        ψ 
        ( 
        y 
        ) 
        = 
        ρ 
        
          y 
          
            ρ 
            − 
            1 
           
         
       
     
    {\displaystyle \psi (y)=\rho y^{\rho -1}} 
   
  . This limit is independent of the chosen sequence 
  
    
      
        { 
        
          t 
          
            k 
           
         
        } 
       
     
    {\displaystyle \{t_{k}\}} 
   
   therefore is true for any sequence. For 
  
    
      
        y 
        = 
        1 
       
     
    {\displaystyle y=1} 
   
   
  
    
      
        u 
        ( 
        x 
        ) 
        ∼ 
        
          
            
              ψ 
              ( 
              x 
              ) 
              U 
              ( 
              x 
              ) 
             
            x 
           
         
        = 
        
          
            
              ρ 
              U 
              ( 
              x 
              ) 
             
            x 
           
         
       
     
    {\displaystyle u(x)\sim {\frac {\psi (x)U(x)}{x}}={\frac {\rho U(x)}{x}}} 
   
   as 
  
    
      
        x 
        → 
        ∞ 
       
     
    {\displaystyle x\to \infty } 
   
  .[ 20]  
Dense 
A subset 
  
    
      
        A 
       
     
    {\displaystyle A} 
   
   of a set 
  
    
      
        X 
       
     
    {\displaystyle X} 
   
   is called dense  if the closure of 
  
    
      
        A 
       
     
    {\displaystyle A} 
   
   is equivalent to 
  
    
      
        X 
       
     
    {\displaystyle X} 
   
  , i.e. 
  
    
      
        
          
            A 
            ¯ 
           
         
        = 
        X 
       
     
    {\displaystyle {\overline {A}}=X} 
   
  . This means that if 
  
    
      
        x 
        ∈ 
        X 
       
     
    {\displaystyle x\in X} 
   
   then 
  
    
      
        x 
       
     
    {\displaystyle x} 
   
   is either in the subset 
  
    
      
        A 
       
     
    {\displaystyle A} 
   
   or is on the boundary of that subset. If it is on the boundary then we can select elements of 
  
    
      
        A 
       
     
    {\displaystyle A} 
   
   which are arbitrarily close to 
  
    
      
        x 
       
     
    {\displaystyle x} 
   
  .
Notes 
↑   Feller 1971, pp. 447. 
 
↑   Feller 1971, pp. 445-447. 
 
↑   Evertse 2024, pp. 152. 
 
↑   Mimica 2015, pp. 19. 
 
↑   Feller 1971, pp. 249. 
 
↑   Feller 1971, pp. 249-250. 
 
↑   Feller 1971, pp. 267. 
 
↑   Feller 1971, pp. 267. 
 
↑   Feller 1971, pp. 267. 
 
↑   Feller 1971, pp. 267-268. 
 
↑   Feller 1971, pp. 267. 
 
↑   Feller 1971, pp. 267-268. 
 
↑   Feller 1971, pp. 431-432. 
 
↑   Feller 1971, pp. 430. 
 
↑   Feller 1971, pp. 430. 
 
↑   Feller 1971, pp. 431. 
 
↑   Feller 1971, pp. 431. 
 
↑   Feller 1971, pp. 433. 
 
↑   Feller 1971, pp. 446. 
 
↑   Feller 1971, pp. 446. 
 
  
 
References