Find the Derivative by Definition
Find the derivative of the following functions using the limit definition of the derivative.
1.

2.

3.

4.

5.

6.

7.

8.

9.

Prove the Constant Rule
10. Use the definition of the derivative to prove that for any fixed real number

,
![{\displaystyle {\frac {d}{dx}}[c\cdot f(x)]=c\cdot {\frac {d}{dx}}[f(x)]}](../../../_assets_/eb734a37dd21ce173a46342d1cc64c92/e100ac3ba73695d9c36ad8ada81efba4c2a01129.svg)
Find the Derivative by Rules
Find the derivative of the following functions:
Power Rule
11.

12.
![{\displaystyle f(x)=3{\sqrt[{3}]{x}}\,}](../../../_assets_/eb734a37dd21ce173a46342d1cc64c92/c7b861dfb68b951e23d614557d2cb071669b0851.svg)
13.

14.

15.

16.

17.
![{\displaystyle f(x)={\frac {3}{x^{4}}}-{\sqrt[{4}]{x}}+x}](../../../_assets_/eb734a37dd21ce173a46342d1cc64c92/ff2d5e5287d1e1f9e9a3f66fe3d81364fbed337c.svg)
18.

19.
![{\displaystyle f(x)={\frac {1}{\sqrt[{3}]{x}}}+{\sqrt {x}}}](../../../_assets_/eb734a37dd21ce173a46342d1cc64c92/aa56b0f9f1e3f9dbd84b8e241f26eec58e0f966e.svg)
Product Rule
20.

21.

22.

23.

24.

25.

26.

27.

28.

Quotient Rule
29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Chain Rule
43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

Exponentials
54.

55.

56.

57.

Logarithms
58.

59.

60.

61.

62.

Trigonometric functions
63.

64.

More Differentiation
65.
![{\displaystyle {\frac {d}{dx}}[(x^{3}+5)^{10}]}](../../../_assets_/eb734a37dd21ce173a46342d1cc64c92/322d22bf641e5d6a35d63be10b39c7353404dfcd.svg)
66.
![{\displaystyle {\frac {d}{dx}}[x^{3}+3x]}](../../../_assets_/eb734a37dd21ce173a46342d1cc64c92/052c718ffadbb9cb4954b7dd5791f055ff1ce77c.svg)
67.
![{\displaystyle {\frac {d}{dx}}[(x+4)(x+2)(x-3)]}](../../../_assets_/eb734a37dd21ce173a46342d1cc64c92/160ae1c70a96f198eb4c1fd16d0ed2940ce4acfb.svg)
68.
![{\displaystyle {\frac {d}{dx}}[{\frac {x+1}{3x^{2}}}]}](../../../_assets_/eb734a37dd21ce173a46342d1cc64c92/9320f75bc1f03266f545ee487bd178d212956699.svg)
69.
![{\displaystyle {\frac {d}{dx}}[3x^{3}]}](../../../_assets_/eb734a37dd21ce173a46342d1cc64c92/d330c0494fcf0513cd524464634f6360c2ed4c23.svg)
70.
![{\displaystyle {\frac {d}{dx}}[x^{4}\sin(x)]}](../../../_assets_/eb734a37dd21ce173a46342d1cc64c92/c54697e3e6e8b7be626f8ad40a67ef061ab14bde.svg)
71.
![{\displaystyle {\frac {d}{dx}}[2^{x}]}](../../../_assets_/eb734a37dd21ce173a46342d1cc64c92/70c4dd6b628068248913d496b20327629fc271d2.svg)
72.
![{\displaystyle {\frac {d}{dx}}[e^{x^{2}}]}](../../../_assets_/eb734a37dd21ce173a46342d1cc64c92/70feadeaf0a4d91cf66a795d8d2f169e942ec523.svg)
73.
![{\displaystyle {\frac {d}{dx}}[e^{2^{x}}]}](../../../_assets_/eb734a37dd21ce173a46342d1cc64c92/ea1c7dffc918e0d7462c5f97f9a145db84a16597.svg)
Implicit Differentiation
Use implicit differentiation to find y'
74.

75.

Logarithmic Differentiation
Use logarithmic differentiation to find
:
76.
![{\displaystyle y=x({\sqrt[{4}]{1-x^{3}}})}](../../../_assets_/eb734a37dd21ce173a46342d1cc64c92/24d04c97ee04319439a96db44e9efa9e702123a0.svg)
77.

78.

79.

80.

Equation of Tangent Line
For each function,
, (a) determine for what values of
the tangent line to
is horizontal and (b) find an equation of the tangent line to
at the given point.
81.

82.

83.

84.

85.

86.

87. Find an equation of the tangent line to the graph defined by

at the point (1,-1).
88. Find an equation of the tangent line to the graph defined by

at the point (1,0).
Higher Order Derivatives
89. What is the second derivative of

?
90. Use induction to prove that the (n+1)th derivative of a n-th order polynomial is 0.
Advanced Understanding of Derivatives
91. Let

be the derivative of

. Prove the derivative of

is

.
92. Suppose a continuous function

has three roots on the interval of

. If

, then what is ONE true guarantee of

using
- (a) the Intermediate Value Theorem;
- (b) Rolle's Theorem;
- (c) the Extreme Value Theorem.
93. Let

, where

is the inverse of

. Let

be differentiable. What is

? Else, why can

not be determined?
94. Let

where

is a constant.
Find a value, if possible, for
that allows each of the following to be true. If not possible, prove that it cannot be done.
- (a) The function
is continuous but non-differentiable.
- (b) The function
is both continuous and differentiable.