Solutions
- This exercise is recommended for all readers.
- This exercise is recommended for all readers.
- This exercise is recommended for all readers.
- Problem 3
Find each solution set by using Gauss-Jordan reduction,
then reading off the parametrization.
-
-
-
-
- Answer
For the "Gauss" halves, see the answers to
Problem I.2.5.
- The "Jordan" half goes this way.
![{\displaystyle {\xrightarrow[{-(1/3)\rho _{2}}]{(1/2)\rho _{1}}}\left({\begin{array}{*{3}{c}|c}1&1/2&-1/2&1/2\\0&1&-2/3&-1/3\end{array}}\right){\xrightarrow[{}]{-(1/2)\rho _{2}+\rho _{1}}}\left({\begin{array}{*{3}{c}|c}1&0&-1/6&2/3\\0&1&-2/3&-1/3\end{array}}\right)}](../../_assets_/eb734a37dd21ce173a46342d1cc64c92/7acd26ad9540757c3d604ca67b2db268cd270c9f.svg)
The solution set is this

- The second half is
![{\displaystyle {\xrightarrow[{}]{\rho _{3}+\rho _{2}}}\left({\begin{array}{*{4}{c}|c}1&0&-1&0&1\\0&1&2&0&3\\0&0&0&1&0\end{array}}\right)}](../../_assets_/eb734a37dd21ce173a46342d1cc64c92/9d3b57d5c2305b62ecda0cda5024f9709ba93483.svg)
so the solution is this.

- This Jordan half
![{\displaystyle {\xrightarrow[{}]{\rho _{2}+\rho _{1}}}\left({\begin{array}{*{4}{c}|c}1&0&1&1&0\\0&1&0&1&0\\0&0&0&0&0\\0&0&0&0&0\end{array}}\right)}](../../_assets_/eb734a37dd21ce173a46342d1cc64c92/9283bc5b4ccc9f6fa973ec2f18ab663fe2e46f0e.svg)
gives

(of course, the zero vector could be omitted from the description).
- The "Jordan" half
![{\displaystyle {\xrightarrow[{}]{-(1/7)\rho _{2}}}\left({\begin{array}{*{5}{c}|c}1&2&3&1&-1&1\\0&1&8/7&2/7&-4/7&0\end{array}}\right){\xrightarrow[{}]{-2\rho _{2}+\rho _{1}}}\left({\begin{array}{*{5}{c}|c}1&0&5/7&3/7&1/7&1\\0&1&8/7&2/7&-4/7&0\end{array}}\right)}](../../_assets_/eb734a37dd21ce173a46342d1cc64c92/7552bfc67375a5494d65986195eccb79e39a222b.svg)
ends with this solution set.

- Problem 4
Give two distinct echelon form versions of this matrix.

- Answer
Routine Gauss' method gives one:
![{\displaystyle {\xrightarrow[{-(1/2)\rho _{1}+\rho _{3}}]{-3\rho _{1}+\rho _{2}}}{\begin{pmatrix}2&1&1&3\\0&1&-2&-7\\0&9/2&1/2&7/2\end{pmatrix}}{\xrightarrow[{}]{-(9/2)\rho _{2}+\rho _{3}}}{\begin{pmatrix}2&1&1&3\\0&1&-2&-7\\0&0&19/2&35\end{pmatrix}}}](../../_assets_/eb734a37dd21ce173a46342d1cc64c92/3c06334a6dcb9481448cd08e320b4f5ab76c1a01.svg)
and any cosmetic change, like multiplying the bottom row by
,

gives another.
- This exercise is recommended for all readers.
- Problem 5
List the reduced echelon forms possible for each size.
-
-
-
-
- Answer
In the cases listed below, we take
.
Thus, some canonical forms
listed below actually include infinitely many cases.
In particular, they includes the cases
and
.
-
,
,
,
-
,
,
,
,
,
,
-
,
,
,
-
,
,
,
,
,
,
,
- This exercise is recommended for all readers.
- Problem 6
What results from applying Gauss-Jordan reduction to a
nonsingular matrix?
- Answer
A nonsingular homogeneous linear system has a unique solution.
So a nonsingular matrix must reduce to a (square)
matrix that is all
's
except for
's down the upper-left to lower-right diagonal, e.g.,

- Problem 7
The proof of Lemma 4 contains a reference to the
condition on the row pivoting operation.
- The definition of row operations has an
condition on
the swap operation
.
Show that in
this condition is not needed.
- Write down a
matrix with nonzero entries,
and show that the
operation is not
reversed by
.
- Expand the proof of that lemma to make explicit exactly where
the
condition on pivoting is used.
- Answer
- The
operation does not
change
.
- For instance,
![{\displaystyle {\begin{pmatrix}1&2\\3&4\end{pmatrix}}{\xrightarrow[{}]{-\rho _{1}+\rho _{1}}}{\begin{pmatrix}0&0\\3&4\end{pmatrix}}{\xrightarrow[{}]{\rho _{1}+\rho _{1}}}{\begin{pmatrix}0&0\\3&4\end{pmatrix}}}](../../_assets_/eb734a37dd21ce173a46342d1cc64c92/3c87efb1de70f7ba0690a407440d674a388f7d7e.svg)
leaves the matrix changed.
- If
then
![{\displaystyle {\begin{array}{rcl}{\begin{pmatrix}\vdots \\a_{i,1}&\cdots &a_{i,n}\\\vdots \\a_{j,1}&\cdots &a_{j,n}\\\vdots \end{pmatrix}}&{\xrightarrow[{}]{k\rho _{i}+\rho _{j}}}&{\begin{pmatrix}\vdots \\a_{i,1}&\cdots &a_{i,n}\\\vdots \\ka_{i,1}+a_{j,1}&\cdots &ka_{i,n}+a_{j,n}\\\vdots \end{pmatrix}}\\&{\xrightarrow[{}]{-k\rho _{i}+\rho _{j}}}&{\begin{pmatrix}\vdots \\a_{i,1}&\cdots &a_{i,n}\\\vdots \\-ka_{i,1}+ka_{i,1}+a_{j,1}&\cdots &-ka_{i,n}+ka_{i,n}+a_{j,n}\\\vdots \end{pmatrix}}\end{array}}}](../../_assets_/eb734a37dd21ce173a46342d1cc64c92/3ef8d6e7687a98315aab9a8b0991c6e943e3aebe.svg)
does indeed give
back.
(Of course, if
then the third matrix would have entries of the
form
.)