Banach-Saks property

Banach-Saks property is a property of certain normed vector spaces stating that every bounded sequence of points in the space has a subsequence that is convergent in the mean (also known as Cesàro summation or limesable). Specifically, for every bounded sequence in the space, there exists a subsequence such that the sequence

is convergent (in the sense of the norm). Sequences satisfying this property are called Banach-Saks sequences.

The concept is named after Polish mathematicians Stefan Banach and Stanisław Saks, who extended Mazur's theorem, which states that the weak limit of a sequence in a Banach space is the limit in the norm of convex combinations of the sequence's terms. They showed that in Lp(0,1) spaces, for , there exists a sequence of convex combinations of the original sequence that is also Cesàro summable.[1] This result was further generalized by Shizuo Kakutani to uniformly convex spaces.[2] Wiesław Szlenk introduced the "weak Banach-Saks property", replacing the bounded sequence condition with a sequence weakly convergent to zero, and proved that the space has this property.[3] The definitions of both Banach-Saks properties extend analogously to subsets of normed spaces.

Theorems and examples

  • Every Banach space with the Banach-Saks property is reflexive.[4] However, there exist reflexive spaces without this property, with the first example provided by Albert Baernstein.[5]
  • Julian Schreier provided the first example of a space (the so-called Schreier space) lacking the weak Banach-Saks property. He also proved that the space of continuous functions on the ordinal lacks this property.[6]
  • p-sums of spaces with the Banach-Saks property retain this property.[7]
  • There exists a space with the Banach-Saks property for which the space (square-integrable functions in the Bochner sense with values in ) lacks this property.[8]
  • The image of a strictly additive vector measure has the Banach-Saks property.[9][10]
  • If a Banach space has a dual space that is uniformly convex, then has the Banach-Saks property.[11]
  • The dual space of the Schlumprecht space has the Banach-Saks property.[12]

p-BS property and Banach-Saks index

For a fixed real number , a bounded sequence in a Banach space is called a p-BS sequence if it contains a subsequence such that

A Banach space is said to have the p-BS property if every sequence weakly convergent to zero contains a subsequence that is a p-BS sequence.[13][14] The p-BS property does not generalize the Banach-Saks property. Notably, every Banach space has the 1-BS property. The set

is of the form or , where . If , the Banach-Saks index of the space is defined as ; if , then . For example, the space has the 2-BS property.[13][14]

References

  1. ^ Banach, S.; Saks, S. (1930). "Sur la convergence forte dans les champs " [On Strong Convergence in Spaces]. Studia Mathematica (in French). 2: 51–57. doi:10.4064/sm-2-1-51-57.
  2. ^ Kakutani, S. (1938). Weak convergence in uniformly convex spaces. Math. Inst. Osaka Imp. Univ. pp. 165–167.
  3. ^ Szlenk, W. (1969). "Sur les suites faiblement convergents dans l'espace " [On Weakly Convergent Sequences in Space]. Studia Mathematica (in French). 25 (3): 337–341. doi:10.4064/sm-25-3-337-341.
  4. ^ Nishiura, T.; Waterman, D. (1963). "Reflexivity and Summability" (PDF). Studia Mathematica. 23: 53–57. doi:10.4064/sm-23-1-53-57.
  5. ^ Baernstein II, A. (1972). "On Reflexivity and Summability". Studia Mathematica. 42: 91–94. doi:10.4064/sm-42-1-91-94.
  6. ^ Schreier, J. (1930). "Ein Gegenbeispiel zur Theorie der swachen Konvergenz" [A Counterexample to the Theory of Weak Convergence]. Studia Mathematica (in German). 2: 58–62. doi:10.4064/sm-2-1-58-62.
  7. ^ Partington, J. R. (1977). "On the Banach–Saks Property". Math. Proc. Cambridge Philos. Soc. 82 (3): 369–374. Bibcode:1977MPCPS..82..369P. doi:10.1017/S0305004100054025.
  8. ^ Guerre, S. (1979–1980). "La propriété de Banach–Saks ne pase pas de à , d'après J. Bourgin" [The Banach–Saks Property Does Not Pass from to , According to J. Bourgin]. Sem. Anal. Fonctionnelle Ecole Polytechn. Palaiseau (in French): 8.
  9. ^ Diestel, J.; Seifert, C. J. (1976). "An Averaging Property of the Range of a Vector Measure". Bulletin of the American Mathematical Society. 82 (6): 907–909. doi:10.1090/S0002-9904-1976-14207-3.
  10. ^ Anantharaman, R. (1977). "The Range of a Vector Measure Has the Banach-Saks Property" (PDF). Proceedings of the American Mathematical Society. 66: 183–184.
  11. ^ Okada, N. (1984). "On the Banach-Saks Property". Proc. Japan Acad. Ser. A Math. Sci. 60 (7): 246–248. doi:10.3792/pjaa.60.246.
  12. ^ Cho, K.; Lee, C. (1998). "Banach-Saks Property on the Dual of the Schlumprecht Space". Kangweon-Kyungki Math. Jour. 6 (2): 341–348.
  13. ^ a b Semenov, E. M.; Sukochev, F. A. (2004). "The Banach–Saks Index". Mat. Sb. 195 (2): 117–140.
  14. ^ a b Astashkin, S. V.; Semenov, E. M.; Sukochev, F. A. (2005). "The Banach-Saks p-Property". Math. Ann. 332 (4): 879–900. doi:10.1007/s00208-005-0658-y.