For an array of 1000 32bit integers, I was able to get a small speedup of about 1.4x single-threaded, using @hirschhornsalz's method in a loop on Intel Sandybridge.  With a 60kiB buffer of ints, the speedup is about 1.37.  With 8MiB of ints, the speedup is still 1.13.  (i5-2500k at 3.8GHz turbo, with DDR3-1600.)
Smaller elements (int16_t or uint8_t, or the unsigned versions) would take an extra stage of shift/add for each doubling of the number of elements per vector.  Overflow is bad, so don't try to use a data type that can't hold the sum of all elements, even though it gives SSE a bigger advantage.
#include <immintrin.h>
// In-place rewrite an array of values into an array of prefix sums.
// This makes the code simpler, and minimizes cache effects.
int prefix_sum_sse(int data[], int n)
{
//    const int elemsz = sizeof(data[0]);
#define elemsz sizeof(data[0])   // clang-3.5 doesn't allow compile-time-const int as an imm8 arg to intrinsics
    __m128i *datavec = (__m128i*)data;
    const int vec_elems = sizeof(*datavec)/elemsz;
    // to use this for int8/16_t, you still need to change the add_epi32, and the shuffle
    const __m128i *endp = (__m128i*) (data + n - 2*vec_elems);  // don't start an iteration beyond this
    __m128i carry = _mm_setzero_si128();
    for(; datavec <= endp ; datavec += 2) {
        IACA_START
        __m128i x0 = _mm_load_si128(datavec + 0);
        __m128i x1 = _mm_load_si128(datavec + 1); // unroll / pipeline by 1
//      __m128i x2 = _mm_load_si128(datavec + 2);
//      __m128i x3;
        x0 = _mm_add_epi32(x0, _mm_slli_si128(x0, elemsz));  // for floats, use shufps not bytewise-shift
        x1 = _mm_add_epi32(x1, _mm_slli_si128(x1, elemsz));
        x0 = _mm_add_epi32(x0, _mm_slli_si128(x0, 2*elemsz));
        x1 = _mm_add_epi32(x1, _mm_slli_si128(x1, 2*elemsz));
    // more shifting if vec_elems is larger
        x0 = _mm_add_epi32(x0, carry);  // this has to go after the byte-shifts, to avoid double-counting the carry.
        _mm_store_si128(datavec +0, x0); // store first to allow destructive shuffle (non-avx pshufb if needed)
        x1 = _mm_add_epi32(_mm_shuffle_epi32(x0, _MM_SHUFFLE(3,3,3,3)), x1);
        _mm_store_si128(datavec +1, x1);
        carry = _mm_shuffle_epi32(x1, _MM_SHUFFLE(3,3,3,3)); // broadcast the high element for next vector
    }
    // FIXME: scalar loop to handle the last few elements
    IACA_END
    return data[n-1];
    #undef elemsz
}
int prefix_sum_simple(int data[], int n)
{
    int sum=0;
    for (int i=0; i<n ; i++) {
        IACA_START
        sum += data[i];
        data[i] = sum;
    }
    IACA_END
    return sum;
}
// perl -we '$n=1000; sub rnlist($$) { return map { int rand($_[1]) } ( 1..$_[0] );}  @a=rnlist($n,127);   $"=", "; print "$n\n@a\n";'
int data[] = { 51, 83, 126, 11,   20, 63, 113, 102,
       126,67, 83, 113,   86, 123, 30, 109,
       97, 71, 109, 86,   67, 60,  47, 12,
       /* ... */ };
int main(int argc, char**argv)
{
    const int elemsz = sizeof(data[0]);
    const int n = sizeof(data)/elemsz;
    const long reps = 1000000 * 1000 / n;
    if (argc >= 2 && *argv[1] == 'n') {
        for (int i=0; i < reps ; i++)
            prefix_sum_simple(data, n);
    }else {
        for (int i=0; i < reps ; i++)
            prefix_sum_sse(data, n);
    }
    return 0;
}
Testing with n=1000, with the list compiled into the binary.  (And yes, I checked that it's actually looping, not taking any compile-time shortcuts that make the vector or non-vector test meaningless.)
Note that compiling with AVX to get 3-operand non-destructive vector instructions saves a lot of movdqa instructions, but only saves a tiny amount of cycles.  This is because shuffle and vector-int-add can both only run on ports 1 and 5, on SnB/IvB, so port0 has plenty of spare cycles to run the mov instructions.  uop-cache throughput bottlenecks might be the reason why the non-AVX version is slightly slower.  (All those extra mov instructions push us up to 3.35 insn/cycle).  The frontend is only idle 4.54% of cycles, so it's barely keeping up.
gcc -funroll-loops -DIACA_MARKS_OFF -g -std=c11 -Wall -march=native -O3 prefix-sum.c -mno-avx -o prefix-sum-noavx
  # gcc 4.9.2
################# SSE (non-AVX) vector version ############
$ ocperf.py stat -e task-clock,cycles,instructions,uops_issued.any,uops_dispatched.thread,uops_retired.all,uops_retired.retire_slots,stalled-cycles-frontend,stalled-cycles-backend ./prefix-sum-noavx 
perf stat -e task-clock,cycles,instructions,cpu/event=0xe,umask=0x1,name=uops_issued_any/,cpu/event=0xb1,umask=0x1,name=uops_dispatched_thread/,cpu/event=0xc2,umask=0x1,name=uops_retired_all/,cpu/event=0xc2,umask=0x2,name=uops_retired_retire_slots/,stalled-cycles-frontend,stalled-cycles-backend ./prefix-sum-noavx
 Performance counter stats for './prefix-sum-noavx':
        206.986720      task-clock (msec)         #    0.999 CPUs utilized          
       777,473,726      cycles                    #    3.756 GHz                    
     2,604,757,487      instructions              #    3.35  insns per cycle        
                                                  #    0.01  stalled cycles per insn
     2,579,310,493      uops_issued_any           # 12461.237 M/sec
     2,828,479,147      uops_dispatched_thread    # 13665.027 M/sec
     2,829,198,313      uops_retired_all          # 13668.502 M/sec (unfused domain)
     2,579,016,838      uops_retired_retire_slots # 12459.818 M/sec (fused domain)
        35,298,807      stalled-cycles-frontend   #    4.54% frontend cycles idle   
         1,224,399      stalled-cycles-backend    #    0.16% backend  cycles idle   
       0.207234316 seconds time elapsed
------------------------------------------------------------
######### AVX (same source, but built with -mavx).  not AVX2 #########
$ ocperf.py stat -e task-clock,cycles,instructions,uops_issued.any,uops_dispatched.thread,uops_retired.all,uops_retired.retire_slots,stalled-cycles-frontend,stalled-cycles-backend ./prefix-sum-avx
 Performance counter stats for './prefix-sum-avx':
        203.429021      task-clock (msec)         #    0.999 CPUs utilized          
       764,859,441      cycles                    #    3.760 GHz                    
     2,079,716,097      instructions              #    2.72  insns per cycle        
                                                  #    0.12  stalled cycles per insn
     2,054,334,040      uops_issued_any           # 10098.530 M/sec                  
     2,303,378,797      uops_dispatched_thread    # 11322.764 M/sec                  
     2,304,140,578      uops_retired_all          # 11326.509 M/sec                  
     2,053,968,862      uops_retired_retire_slots # 10096.735 M/sec                  
       240,883,566      stalled-cycles-frontend   #   31.49% frontend cycles idle   
         1,224,637      stalled-cycles-backend    #    0.16% backend  cycles idle   
       0.203732797 seconds time elapsed
------------------------------------------------------------
################## scalar version (cmdline arg) #############    
$ ocperf.py stat -e task-clock,cycles,instructions,uops_issued.any,uops_dispatched.thread,uops_retired.all,uops_retired.retire_slots,stalled-cycles-frontend,stalled-cycles-backend ./prefix-sum-avx n
 Performance counter stats for './prefix-sum-avx n':
        287.567070      task-clock (msec)         #    0.999 CPUs utilized          
     1,082,611,453      cycles                    #    3.765 GHz                    
     2,381,840,355      instructions              #    2.20  insns per cycle        
                                                  #    0.20  stalled cycles per insn
     2,272,652,370      uops_issued_any           # 7903.034 M/sec                  
     4,262,838,836      uops_dispatched_thread    # 14823.807 M/sec                  
     4,256,351,856      uops_retired_all          # 14801.249 M/sec                  
     2,256,150,510      uops_retired_retire_slots # 7845.650 M/sec                  
       465,018,146      stalled-cycles-frontend   #   42.95% frontend cycles idle   
         6,321,098      stalled-cycles-backend    #    0.58% backend  cycles idle   
       0.287901811 seconds time elapsed
------------------------------------------------------------    
Haswell should be about the same, but maybe slightly slower per-clock, because shuffle can only run on port 5, not port 1.  (vector-int add is still p1/5 on Haswell.)
OTOH, IACA thinks Haswell will be slightly faster than SnB for one iteration, if you compile without -funroll-loops (which does help on SnB).  Haswell can do branches on port6, but on SnB branches are on port5, which we already saturate.
 # compile without -DIACA_MARKS_OFF
$ iaca -64 -mark 1 -arch HSW prefix-sum-avx    
Intel(R) Architecture Code Analyzer Version - 2.1
Analyzed File - prefix-sum-avx
Binary Format - 64Bit
Architecture  - HSW
Analysis Type - Throughput
*******************************************************************
Intel(R) Architecture Code Analyzer Mark Number 1
*******************************************************************
Throughput Analysis Report
--------------------------
Block Throughput: 6.20 Cycles       Throughput Bottleneck: Port5
Port Binding In Cycles Per Iteration:
---------------------------------------------------------------------------------------
|  Port  |  0   -  DV  |  1   |  2   -  D   |  3   -  D   |  4   |  5   |  6   |  7   |
---------------------------------------------------------------------------------------
| Cycles | 1.0    0.0  | 5.8  | 1.4    1.0  | 1.4    1.0  | 2.0  | 6.2  | 1.0  | 1.3  |
---------------------------------------------------------------------------------------
N - port number or number of cycles resource conflict caused delay, DV - Divider pipe (on port 0)
D - Data fetch pipe (on ports 2 and 3), CP - on a critical path
F - Macro Fusion with the previous instruction occurred
* - instruction micro-ops not bound to a port
^ - Micro Fusion happened
# - ESP Tracking sync uop was issued
@ - SSE instruction followed an AVX256 instruction, dozens of cycles penalty is expected
! - instruction not supported, was not accounted in Analysis
| Num Of |                    Ports pressure in cycles                     |    |
|  Uops  |  0  - DV  |  1  |  2  -  D  |  3  -  D  |  4  |  5  |  6  |  7  |    |
---------------------------------------------------------------------------------
|   1    |           |     | 1.0   1.0 |           |     |     |     |     |    | vmovdqa xmm2, xmmword ptr [rax]
|   1    | 1.0       |     |           |           |     |     |     |     |    | add rax, 0x20
|   1    |           |     |           | 1.0   1.0 |     |     |     |     |    | vmovdqa xmm3, xmmword ptr [rax-0x10]
|   1    |           |     |           |           |     | 1.0 |     |     | CP | vpslldq xmm1, xmm2, 0x4
|   1    |           | 1.0 |           |           |     |     |     |     |    | vpaddd xmm2, xmm2, xmm1
|   1    |           |     |           |           |     | 1.0 |     |     | CP | vpslldq xmm1, xmm3, 0x4
|   1    |           | 1.0 |           |           |     |     |     |     |    | vpaddd xmm3, xmm3, xmm1
|   1    |           |     |           |           |     | 1.0 |     |     | CP | vpslldq xmm1, xmm2, 0x8
|   1    |           | 1.0 |           |           |     |     |     |     |    | vpaddd xmm2, xmm2, xmm1
|   1    |           |     |           |           |     | 1.0 |     |     | CP | vpslldq xmm1, xmm3, 0x8
|   1    |           | 1.0 |           |           |     |     |     |     |    | vpaddd xmm3, xmm3, xmm1
|   1    |           | 0.9 |           |           |     | 0.2 |     |     | CP | vpaddd xmm1, xmm2, xmm0
|   2^   |           |     |           |           | 1.0 |     |     | 1.0 |    | vmovaps xmmword ptr [rax-0x20], xmm1
|   1    |           |     |           |           |     | 1.0 |     |     | CP | vpshufd xmm1, xmm1, 0xff
|   1    |           | 0.9 |           |           |     | 0.1 |     |     | CP | vpaddd xmm0, xmm1, xmm3
|   2^   |           |     | 0.3       | 0.3       | 1.0 |     |     | 0.3 |    | vmovaps xmmword ptr [rax-0x10], xmm0
|   1    |           |     |           |           |     | 1.0 |     |     | CP | vpshufd xmm0, xmm0, 0xff
|   1    |           |     |           |           |     |     | 1.0 |     |    | cmp rax, 0x602020
|   0F   |           |     |           |           |     |     |     |     |    | jnz 0xffffffffffffffa3
Total Num Of Uops: 20
BTW, gcc compiled the loop to use a one-register addressing mode even when I had a loop counter and was doing load(datavec + i + 1).  That's the best code, esp. on SnB-family where 2-register addressing modes can't micro-fuse, so I change the source to that loop condition for the benefit of clang.