I have a dataFrame in pandas and several of the columns have all null values. Is there a built in function which will let me remove those columns?
- 
                    2could you maybe accept the answer? This will mark the question as resolved and help other users as well. – MERose Nov 01 '16 at 09:16
4 Answers
Yes, dropna. See http://pandas.pydata.org/pandas-docs/stable/missing_data.html and the DataFrame.dropna docstring:
Definition: DataFrame.dropna(self, axis=0, how='any', thresh=None, subset=None)
Docstring:
Return object with labels on given axis omitted where alternately any
or all of the data are missing
Parameters
----------
axis : {0, 1}
how : {'any', 'all'}
    any : if any NA values are present, drop that label
    all : if all values are NA, drop that label
thresh : int, default None
    int value : require that many non-NA values
subset : array-like
    Labels along other axis to consider, e.g. if you are dropping rows
    these would be a list of columns to include
Returns
-------
dropped : DataFrame
The specific command to run would be:
df=df.dropna(axis=1,how='all')
 
    
    - 2,264
- 2
- 22
- 25
 
    
    - 101,437
- 32
- 142
- 108
- 
                    1can you specify the 'dropna' value? for example could you drop rows that are all zeros? – zach Oct 10 '12 at 19:15
- 
                    7you could either define with the pandas io parsers that your NaN value in given input tabels is 0, OR, you could prepare your step like this: `df[df==0] = np.nan ; df=df.dropna(axis=1,how='all')` – K.-Michael Aye Dec 11 '12 at 01:50
- 
                    1
- 
                    I used `df=df.dropna(axis=1,how='all')` but it removed all my df columns. Other columns are not entirely empty. – Jade Cacho Jan 06 '20 at 23:17
Another solution would be to create a boolean dataframe with True values at not-null positions and then take the columns having at least one True value. This removes columns with all NaN values.
df = df.loc[:,df.notna().any(axis=0)]
If you want to remove columns having at least one missing (NaN) value;
df = df.loc[:,df.notna().all(axis=0)]
This approach is particularly useful in removing columns containing empty strings, zeros or basically any given value. For example;
df = df.loc[:,(df!='').all(axis=0)]
removes columns having at least one empty string.
 
    
    - 2,310
- 4
- 20
- 33
Here is a simple function which you can use directly by passing dataframe and threshold
df
'''
     pets   location     owner     id
0     cat  San_Diego     Champ  123.0
1     dog        NaN       Ron    NaN
2     cat        NaN     Brick    NaN
3  monkey        NaN     Champ    NaN
4  monkey        NaN  Veronica    NaN
5     dog        NaN      John    NaN
'''
def rmissingvaluecol(dff,threshold):
    l = []
    l = list(dff.drop(dff.loc[:,list((100*(dff.isnull().sum()/len(dff.index))>=threshold))].columns, 1).columns.values)
    print("# Columns having more than %s percent missing values:"%threshold,(dff.shape[1] - len(l)))
    print("Columns:\n",list(set(list((dff.columns.values))) - set(l)))
    return l
rmissingvaluecol(df,1) #Here threshold is 1% which means we are going to drop columns having more than 1% of missing values
#output
'''
# Columns having more than 1 percent missing values: 2
Columns:
 ['id', 'location']
'''
Now create new dataframe excluding these columns
l = rmissingvaluecol(df,1)
df1 = df[l]
PS: You can change threshold as per your requirement
Bonus step
You can find the percentage of missing values for each column (optional)
def missing(dff):
    print (round((dff.isnull().sum() * 100/ len(dff)),2).sort_values(ascending=False))
missing(df)
#output
'''
id          83.33
location    83.33
owner        0.00
pets         0.00
dtype: float64
'''
 
    
    - 1
- 1
 
    
    - 3,620
- 1
- 23
- 38
- 
                    1This answer is inferior to [`df.dropna(..., thresh)`](https://pandas.pydata.org/pandas-docs/version/0.17/generated/pandas.DataFrame.dropna.html) implements this, we just need to calculate the right value. And you don't need to create any new dataframe, you just do `df.dropna(..., inplace=True)`. – smci Sep 09 '19 at 23:59
Function for removing all null columns from the data frame:
def Remove_Null_Columns(df):
    dff = pd.DataFrame()
    for cl in fbinst:
        if df[cl].isnull().sum() == len(df[cl]):
            pass
        else:
            dff[cl] = df[cl]
    return dff 
This function will remove all Null columns from the df.
 
    
    - 1
- 1
- 
                    2Please, if you answer something, atleast use a correct guidestyle like pep8... Also, pandas offers the dropna() function, so this is not a good answer... – Noki Sep 04 '18 at 11:38
 
    