If you have to store a const reference to some instance of type B into your class A, then surely you want to be ensured, that lifetime of A instance will be exceeded by the lifetime of B instance:
B b{};
A a1{b}; // allowed
A a2{B{}}; // should be denied
B const f() { return B{}; } // const result type may make sense for user-defined types
A a3{f()}; // should also be denied!
To make it possible you should explicitly to = delete; all the constructor overloadings, which can accept rvalues (both const && and &&). For this to achieve you should just to = delete; only const && version of constructor.
struct B {};
struct A
{
    B const & b;
    A(B const & bb) : b(bb) { ; } // accepts only `B const &` and `B &`
    A(B const &&) = delete; // prohibits both `B &&` and `B const &&`
};
This approach allows you to prohibit passing to the constructor all kinds of rvalues.
This also works for built-in scalars. For example, double const f() { return 0.01; }, though it cause a warning like:
warning: 'const' type qualifier on return type has no effect [-Wignored-qualifiers]
it still can has effect if you just = delete; only && version of constructor:
struct A
{
    double const & eps;
    A(double const & e) : eps(e) {} // binds to `double const &`, `double &` AND ! `double const &&`
    A(double &&) = delete; // prohibit to binding only to `double &&`, but not to `double const &&`
};
double const get_eps() { return 0.01; }
A a{0.01}; // hard error
A a{get_eps()}; // no hard error, but it is wrong!
For non-conversion constructors (i.e. non-unary) there is an issue: you may have to provide = delete;-d versions for all the combinatorically possible versions of constructors as follows:
struct A
{
    A(B const &, C const &) {}
    A(B const &&, C const &&) = delete;
    // and also!
    A(B const &, C const &&) = delete;
    A(B const &&, C const &) = delete;
};
to prohibit mixed-cases like:
B b{};
A a{b, C{}};