I've been experimenting with mremap(). I'd like to be able to move virtual memory pages around at high speeds. At least higher speeds than copying them. I have some ideas for algorithms which could make use of being able to move memory pages really fast. Problem is that the program below shows that mremap() is very slow -- at least on my i7 laptop -- compared to actually copying the same memory pages byte by byte.
How does the test source code work? mmap() 256 MB of RAM which is bigger than the on-CPU caches. Iterate for 200,000 times. On each iteration swap two random memory pages using a particular swap method. Run once and time using the mremap()-based page swap method. Run again and time using the byte-by-byte copy swap methed. Turns out that mremap() only manages 71,577 page swaps per second, whereas the byte-by-byte copy manages a whopping 287,879 page swaps per second. So mremap() is 4 times slower than a byte by byte copy!
Questions:
Why is mremap() so slow?
Is there another user-land or kernel-land callable page mapping manipulation API which might be faster?
Is there another user-land or kernel-land callable page mapping manipulation API allowing multiple, non-consecutive pages to be remapped in one call?
Are there any kernel extensions that support this sort of thing?
#include <stdio.h>
#include <string.h>
#define __USE_GNU
#include <unistd.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/errno.h>
#include <asm/ldt.h>
#include <asm/unistd.h>    
// gcc mremap.c && perl -MTime::HiRes -e '$t1=Time::HiRes::time;system(q[TEST_MREMAP=1 ./a.out]);$t2=Time::HiRes::time;printf qq[%u per second\n],(1/($t2-$t1))*200_000;'
// page size = 4096
// allocating 256 MB
// before 0x7f8e060bd000=0
// before 0x7f8e060be000=1
// before 0x7f8e160bd000
// after  0x7f8e060bd000=41
// after  0x7f8e060be000=228
// 71577 per second
// gcc mremap.c && perl -MTime::HiRes -e '$t1=Time::HiRes::time;system(q[TEST_COPY=1 ./a.out]);$t2=Time::HiRes::time;printf qq[%u per second\n],(1/($t2-$t1))*200_000;'
// page size = 4096
// allocating 256 MB
// before 0x7f1a9efa5000=0
// before 0x7f1a9efa6000=1
// before 0x7f1aaefa5000
// sizeof(i)=8
// after  0x7f1a9efa5000=41
// after  0x7f1a9efa6000=228
// 287879 per second
// gcc mremap.c && perl -MTime::HiRes -e '$t1=Time::HiRes::time;system(q[TEST_MEMCPY=1 ./a.out]);$t2=Time::HiRes::time;printf qq[%u per second\n],(1/($t2-$t1))*200_000;'
// page size = 4096
// allocating 256 MB
// before 0x7faf7c979000=0
// before 0x7faf7c97a000=1
// before 0x7faf8c979000
// sizeof(i)=8
// after  0x7faf7c979000=41
// after  0x7faf7c97a000=228
// 441911 per second
/*
 * Algorithm:
 * - Allocate 256 MB of memory
 * - loop 200,000 times
 *   - swap a random 4k block for a random 4k block
 * Run the test twice; once for swapping using page table, once for swapping using CPU copying!
 */
#define PAGES (1024*64)
int main() {
    int PAGE_SIZE = getpagesize();
    char* m = NULL;
    unsigned char* p[PAGES];
    void* t;
    printf("page size = %d\n", PAGE_SIZE);
    printf("allocating %u MB\n", PAGE_SIZE*PAGES / 1024 / 1024);
    m = (char*)mmap(0, PAGE_SIZE*(1+PAGES), PROT_READ | PROT_WRITE, MAP_SHARED  | MAP_ANONYMOUS, -1, 0);
    t = &m[PAGES*PAGE_SIZE];
    {
        unsigned long i;
        for (i=0; i<PAGES; i++) {
            p[i] = &m[i*PAGE_SIZE];
            memset(p[i], i & 255, PAGE_SIZE);
        }
    }
    printf("before %p=%u\n", p[0], p[0][0]);
    printf("before %p=%u\n", p[1], p[1][0]);
    printf("before %p\n", t);
    if (getenv("TEST_MREMAP")) {
        unsigned i;
        for (i=0; i<200001; i++) {
            unsigned p1 = random() % PAGES;
            unsigned p2 = random() % PAGES;
    //      mremap(void *old_address, size_t old_size, size_t new_size,int flags, /* void *new_address */);
            mremap(p[p2], PAGE_SIZE, PAGE_SIZE, MREMAP_FIXED | MREMAP_MAYMOVE, t    );
            mremap(p[p1], PAGE_SIZE, PAGE_SIZE, MREMAP_FIXED | MREMAP_MAYMOVE, p[p2]);
            mremap(t    , PAGE_SIZE, PAGE_SIZE, MREMAP_FIXED | MREMAP_MAYMOVE, p[p1]); // p3 no longer exists after this!
        } /* for() */
    }
    else if (getenv("TEST_MEMCPY")) {
        unsigned long * pu[PAGES];
        unsigned long   i;
        for (i=0; i<PAGES; i++) {
            pu[i] = (unsigned long *)p[i];
        }
        printf("sizeof(i)=%lu\n", sizeof(i));
        for (i=0; i<200001; i++) {
            unsigned p1 = random() % PAGES;
            unsigned p2 = random() % PAGES;
            unsigned long * pa = pu[p1];
            unsigned long * pb = pu[p2];
            unsigned char t[PAGE_SIZE];
            //memcpy(void *dest, const void *src, size_t n);
            memcpy(t , pb, PAGE_SIZE);
            memcpy(pb, pa, PAGE_SIZE);
            memcpy(pa, t , PAGE_SIZE);
        } /* for() */
    }
    else if (getenv("TEST_MODIFY_LDT")) {
        unsigned long * pu[PAGES];
        unsigned long   i;
        for (i=0; i<PAGES; i++) {
            pu[i] = (unsigned long *)p[i];
        }
        printf("sizeof(i)=%lu\n", sizeof(i));
        // int modify_ldt(int func, void *ptr, unsigned long bytecount);
        // 
        // modify_ldt(int func, void *ptr, unsigned long bytecount);
        // modify_ldt() reads or writes the local descriptor table (ldt) for a process. The ldt is a per-process memory management table used by the i386 processor. For more information on this table, see an Intel 386 processor handbook.
        // 
        // When func is 0, modify_ldt() reads the ldt into the memory pointed to by ptr. The number of bytes read is the smaller of bytecount and the actual size of the ldt.
        // 
        // When func is 1, modify_ldt() modifies one ldt entry. ptr points to a user_desc structure and bytecount must equal the size of this structure.
        // 
        // The user_desc structure is defined in <asm/ldt.h> as:
        // 
        // struct user_desc {
        //     unsigned int  entry_number;
        //     unsigned long base_addr;
        //     unsigned int  limit;
        //     unsigned int  seg_32bit:1;
        //     unsigned int  contents:2;
        //     unsigned int  read_exec_only:1;
        //     unsigned int  limit_in_pages:1;
        //     unsigned int  seg_not_present:1;
        //     unsigned int  useable:1;
        // };
        //
        // On success, modify_ldt() returns either the actual number of bytes read (for reading) or 0 (for writing). On failure, modify_ldt() returns -1 and sets errno to indicate the error.
        unsigned char ptr[20000];
        int result;
        result = modify_ldt(0, &ptr[0], sizeof(ptr)); printf("result=%d, errno=%u\n", result, errno);
        result = syscall(__NR_modify_ldt, 0, &ptr[0], sizeof(ptr)); printf("result=%d, errno=%u\n", result, errno);
        // todo: how to get these calls returning a non-zero value?
    }
    else {
        unsigned long * pu[PAGES];
        unsigned long   i;
        for (i=0; i<PAGES; i++) {
            pu[i] = (unsigned long *)p[i];
        }
        printf("sizeof(i)=%lu\n", sizeof(i));
        for (i=0; i<200001; i++) {
            unsigned long j;
            unsigned p1 = random() % PAGES;
            unsigned p2 = random() % PAGES;
            unsigned long * pa = pu[p1];
            unsigned long * pb = pu[p2];
            unsigned long t;
            for (j=0; j<(4096/8/8); j++) {
                t = *pa; *pa ++ = *pb; *pb ++ = t;
                t = *pa; *pa ++ = *pb; *pb ++ = t;
                t = *pa; *pa ++ = *pb; *pb ++ = t;
                t = *pa; *pa ++ = *pb; *pb ++ = t;
                t = *pa; *pa ++ = *pb; *pb ++ = t;
                t = *pa; *pa ++ = *pb; *pb ++ = t;
                t = *pa; *pa ++ = *pb; *pb ++ = t;
                t = *pa; *pa ++ = *pb; *pb ++ = t;
            }
        } /* for() */
    }
    printf("after  %p=%u\n", p[0], p[0][0]);
    printf("after  %p=%u\n", p[1], p[1][0]);
    return 0;
}
Update: So that we don't need to question how fast 'round-trip to kernelspace' is, here's a further performance test program that shows that we can call getpid() 3 times in a row, 81,916,192 times per second on the same i7 laptop:
#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
// gcc getpid.c && perl -MTime::HiRes -e '$t1=Time::HiRes::time;system(q[TEST_COPY=1 ./a.out]);$t2=Time::HiRes::time;printf qq[%u per second\n],(1/($t2-$t1))*100_000_000;'
// running_total=8545800085458
// 81916192 per second
/*
 * Algorithm:
 * - Call getpid() 100 million times.
 */
int main() {
    unsigned i;
    unsigned long running_total = 0;
    for (i=0; i<100000001; i++) {
        /*      123123123 */
        running_total += getpid();
        running_total += getpid();
        running_total += getpid();
    } /* for() */
    printf("running_total=%lu\n", running_total);
}
Update 2: I added WIP code to call a function I discovered called modify_ldt(). The man page hints that page manipulation might be possible. However, no matter what I try then the function always returns zero when I'm expecting it to return the number of bytes read. 'man modify_ldt' says "On success, modify_ldt() returns either the actual number of bytes read (for reading) or 0 (for writing). On failure, modify_ldt() returns -1 and sets errno to indicate the error." Any ideas (a) whether modify_ldt() will be an alternative to mremap() ? and (b) how to get modify_ldt() working?
 
     
    