Yes, but the solution will not be unique. Also you should rather put translation at the end (the order of the rest doesn't matter)
For any given square matrix A there exists infinitely many matrices B and C so that A = B*C. Choose any invertible matrix B (which means that B^-1 exists or det(B) != 0) and now  C = B^-1*A.
So for your solution first decompose MC into MT and MS*MR*MSk*I, choosing MT to be some invertible transposition matrix. Then decompose the rest into MS and MR*MSk*I so that MS is arbitrary scaling matrix. And so on...
Now if at the end of the fun I is an identity matrix (with 1 on diagonal, 0 elsewhere) you're good. If it is not, start over, but choose different matrices ;-) 
In fact, using the method above symbolically you can create set of equations that will yield you a parametrized formulas for all of these matrices. 
How useful these decompositions would be for you, well - that's another story.
If you type this into Mathematica or Maxima they'll compute this for you in no time.