I built upon a few posts here to make an evaluator class. Also used
eval example which I basically rewrote into a class object.
import sys
import ast
import operator as op
import abc
import math
class IEvaluator:
    __metaclass__ = abc.ABCMeta
    @abc.abstractmethod
    def eval_expr(cls, expr, subs):  # @NoSelf
        '''IMPORTANT: this is class method, overload it with @classmethod!
        Evaluate an expression given in the expr string.
        :param expr: str. String expression.
        :param subs: dict. Dictionary with values to substitute.
        :returns: Evaluated expression result.
        '''
class Evaluator(IEvaluator):
    '''Generic evaluator for a string expression. Uses ast and operator
    modules. The expr string is parsed with ast resulting in a node tree.
    Then the node tree is recursively traversed and evaluated with operations
    from the operator module.
    :implements: IEvaluator
    '''
    @classmethod
    def _get_op(cls, node):
        '''Get the operator corresponding to the node.
        :param node: Operator node type with node.op property.
        '''
        # supported operators
        operators = {
            ast.Add: op.add,
            ast.Sub: op.sub,
            ast.Mult: op.mul,
            ast.Div: op.truediv,
            ast.Pow: op.pow,
            ast.BitXor: op.xor,
            ast.USub: op.neg
        }
        return operators[type(node.op)]
    @classmethod
    def _get_op_fun(cls, node):
        # fun_call = {'sin': math.sin, 'cos': math.cos}[node.func.id]
        fun_call = getattr(math, node.func.id)
        return fun_call
    @classmethod
    def _num_op(cls, node, subs):
        '''Return the value of the node.
        :param node: Value node type with node.n property.
        '''
        return node.n
    @classmethod
    def _bin_op(cls, node, subs):
        '''Eval the left and right nodes, and call the binary operator.
        :param node: Binary operator with node.op, node.left, and node.right
            properties.
        '''
        op = cls._get_op(node)
        left_node = cls.eval(node.left, subs)
        right_node = cls.eval(node.right, subs)
        return op(left_node, right_node)
    @classmethod
    def _unary_op(cls, node, subs):
        '''Eval the node operand and call the unary operator.
        :param node: Unary operator with node.op and node.operand properties.
        '''
        op = cls._get_op(node)
        return op(cls.eval(node.operand, subs))
    @classmethod
    def _subs_op(cls, node, subs):
        '''Return the value of the variable represented by the node.
        :param node: Name node with node.id property to identify the variable.
        '''
        try:
            return subs[node.id]
        except KeyError:
            raise TypeError(node)
    @classmethod
    def _call_op(cls, node, subs):
        arg_list = []
        for node_arg in node.args:
            arg_list.append(cls.eval(node_arg, subs))
        fun_call = cls._get_op_fun(node)
        return fun_call(*arg_list)
    @classmethod
    def eval(cls, node, subs):
        '''The node is actually a tree. The node type i.e. type(node) is:
            ast.Num, ast.BinOp, ast.UnaryOp or ast.Name.
        Depending on the node type the node will have the following properties:
            node.n - Nodes value.
            node.id - Node id corresponding to a key in the subs dictionary.
            node.op - operation node. Type of node.op identifies the operation.
                type(node.op) is one of ast.Add, ast.Sub, ast.Mult, ast.Div,
                ast.Pow, ast.BitXor, or ast.USub.
            node.left or node.right - Binary operation node needs to have links
                to left and right nodes.
            node.operand - Unary operation node needs to have an operand.
        The binary and unary operations call eval recursively.
        '''
        # The functional logic is:
        # if isinstance(node, ast.Num):  # <number>
        #     return node.n
        # elif isinstance(node, ast.BinOp):  # <left> <operator> <right>
        #     return operators[type(node.op)](eval_(node.left, subs),
        #                                     eval_(node.right, subs))
        # elif isinstance(node, ast.UnaryOp):  # <operator> <operand> e.g., -1
        #     return operators[type(node.op)](eval_(node.operand, subs))
        # else:
        #     try:
        #         return subs[node.id]
        #     except KeyError:
        #         raise TypeError(node)
        node_type = type(node)
        return {
            # Value in the expression. Leaf.
            ast.Num: cls._num_op,  # <number>
            # Bin operation with two operands.
            ast.BinOp: cls._bin_op,  # <left> <operator> <right>
            # Unary operation such as neg.
            ast.UnaryOp: cls._unary_op,  # <operator> <operand> e.g., -1
            # Sub the value for the variable. Leaf.
            ast.Name: cls._subs_op,  # <variable>
            ast.Call: cls._call_op
        }[node_type](node, subs)
    @classmethod
    def eval_expr(cls, expr, subs=None):
        '''Evaluates a string expression. The expr string is parsed with ast
        resulting in a node tree. Then the eval method is used to recursively
        traverse and evaluate the nodes. Symbolic params are taken from subs.
        :Example:
            >>> eval_expr('2^6')
            4
            >>> eval_expr('2**6')
            64
            >>> eval_expr('1 + 2*3**(4^5) / (6 + -7)')
            -5.0
            >>> eval_expr('x + y', {'x': 1, 'y': 2})
            3
        :param expr: str. String expression.
        :param subs: dict. (default: globals of current and calling stack.)
        :returns: Result of running the evaluator.
        :implements: IEvaluator.eval_expr
        '''
        # ref: https://stackoverflow.com/a/9558001/3457624
        if subs is None:
            # Get the globals
            frame = sys._getframe()
            subs = {}
            subs.update(frame.f_globals)
            if frame.f_back:
                subs.update(frame.f_back.f_globals)
        expr_tree = ast.parse(expr, mode='eval').body
        return cls.eval(expr_tree, subs)
Here are some examples:
import sympy
from eval_sympy import Evaluator
# test case...
x = sympy.Symbol('x')
y = sympy.Symbol('y')
expr = x * 2 - y ** 2
# z = expr.subs({x:1, y:2})
str_expr = str(expr)
print str_expr
x = 1
y = 2
out0 = Evaluator.eval_expr(str_expr)
print '(x, y): ({}, {})'.format(x, y)
print str_expr, ' = ', out0
subs1 = {'x': 1, 'y': 2}
out1 = Evaluator.eval_expr(str_expr, subs1)
print 'subs: ', subs1
print str_expr, ' = ', out1
sin_subs = {'x': 1, 'y': 2}
sin_out = Evaluator.eval_expr('sin(log10(x*y))', sin_subs)
print 'sin_subs: ', sin_subs
print 'sin(log10(x*y)) = ', sin_out
Results
2*x - y**2
(x, y): (1, 2)
2*x - y**2  =  -2
subs:  {'y': 2, 'x': 1}
2*x - y**2  =  -2
sin_subs:  {'y': 2, 'x': 1}
sin(log10(x*y)) =  0.296504042171