I am experimenting with the new features of C++11. In my setup I would really love to use inheriting constructors, but unfortunately no compiler implements those yet. Therefore I am trying to simulate the same behaviour. I can write something like this:
template <class T>
class Wrapper : public T {
    public:
    template <typename... As>
    Wrapper(As && ... as) : T { std::forward<As>(as)... } { }
    // ... nice additions to T ...
};
This works... most of the time. Sometimes the code using the Wrapper class(es) must use SFINAE to detect how such a Wrapper<T> can be constructed. There is however the following issue: as far as overload resolution is concerned, the constructor of Wrapper<T> will accept any arguments -- but then compilation fails (and this is not covered by SFINAE) if the type T cannot be constructed using those.
I was trying to conditionally enable the different instantiations of the constructor template using enable_if
    template <typename... As, typename std::enable_if<std::is_constructible<T, As && ...>::value, int>::type = 0>
    Wrapper(As && ... as) // ...
which works fine as long as:
- the appropriate constructor of 
Tispublic Tis not abstract
My question is: how to get rid of the above two constraints?
I tried to overcome the first by checking (using SFINAE and sizeof()) whether the expression new T(std::declval<As &&>()...) is well-formed within Wrapper<T>. But this, of course, does not work, because the only way a derived class can use its base's protected constructor is in the member initialization list.
For the second one, I have no idea whatsoever -- and it is the one I need more, because sometimes it is the Wrapper which implements the abstract functions of T, making it a complete type.
I want a solution which:
- is correct according to the standard
 - works in any of gcc-4.6.*, gcc-4.7.* or clang-3.*
 
Thanks!