I'd say, that foxcub's answer is wrong. To prove that I will introduce a helpful definition for a perfectly shuffled list (call it array or sequence or whatever you want).
Definition: Assume we have a List L containing the elements a1, a2 ... an and the indexes 1, 2, 3..... n. If we expose the L to a shuffle operation (to which internals we have no access) L is perfectly shuffled if and only if by knowing indexes of some k (k< n) elements we can't deduce the indexes of remaining n-k elements. That is the remaining n-k elements are equally probable to be revealed at any of the remaining n-k indexes.
Example: if we have a four element list [a, b, c, d] and after shuffling it, we know that its first element is a ([a, .., .., ..]) than the probability for any of the elements b, c, d to occur in, let's say, the third cell equals 1/3.
Now, the smallest list for which the algorithm does not fulfil the definition has three elements. But the algorithm converts it to a 4-element list anyway, so we will try to show its incorrectness for a 4-element list.
Consider an input L = [a, b, c, d]Following the first run of the algorithm the L will be divided into l1 = [a, c] and l2 = [b, d]. After shuffling these two sublists (but before merging into the four-element result) we can get four equally probable 2-elements lists:
l1shuffled = [a , c] l2shuffled = [b , d]
l1shuffled = [a , c] l2shuffled = [d , b]
l1shuffled = [c , a] l2shuffled = [b , d]
l1shuffled = [c , a] l2shuffled = [d , b]
Now try to answer two questions.
1. What is the probability that after merging into the final result a will be the first element of the list.
Simply enough, we can see that only two of the four pairs above (again, equally probable) can give such a result (p1 = 1/2). For each of these pairs heads must be drawed during first flipping in the merge routine (p2 = 1/2). Thus the probability for having a as the first element of the Lshuffled is p = p1*p2 = 1/4, which is correct.
2. Knowing that a is on the first position of the Lshuffled, what is the probability of having c (we could as well choose b or d without loss of generality) on the second position of the Lshuffled
Now, according to the above definition of a perfectly shuffled list, the answer should be 1/3, since there are three numbers to put in the three remaining cells in the list
Let's see if the algorithm assures that.
After choosing 1 as the first element of the Lshuffled we would now have either:
l1shuffled = [c] l2shuffled = [b, d]
or:
l1shuffled = [c] l2shuffled = [d, b]
The probability of choosing 3 in both cases is equal to the probability of flipping heads (p3 = 1/2), thus the probability of having 3 as the second element of Lshuffled, when knowing that the first element element of Lshuffled is 1 equals 1/2. 1/2 != 1/3 which ends the proof of the incorrectness of the algorithm.
The interesting part is that the algorithm fullfils the necessary (but not sufficient) condition for a perfect shuffle, namely:
Given a list of n elements, for every index k (<n), for every element ak: after shuffling the list m times, if we have counted the times when ak occured on the k index, this count will tend to m/n by probability, with m tending to infinity.