First, define two integers N and K, where N >= K, both known at compile time. For example: N = 8 and K = 3.
Next, define a set of integers [0, N) (or [1, N] if that makes the answer simpler) and call it S. For example: {0, 1, 2, 3, 4, 5, 6, 7}
The number of subsets of S with K elements is given by the formula C(N, K). Example
My problem is this: Create a perfect minimal hash for those subsets. The size of the example hash table will be C(8, 3) or 56.
I don't care about ordering, only that there be 56 entries in the hash table, and that I can determine the hash quickly from a set of K integers. I also don't care about reversibility.
Example hash: hash({5, 2, 3}) = 42. (The number 42 isn't important, at least not here)
Is there a generic algorithm for this that will work with any values of N and K? I wasn't able to find one by searching Google, or my own naive efforts.