I am attempting to transform columns to rows in R, without the use of reshape (can't install the package). The data I have received includes attributes and their corresponding metrics. I would like to calculate the statistical correlation between all of these attributes--16000 in total with 8 million records. Not all records have the same number of attributes.
To do this, I believe I will have to convert columns to rows so that I can eventually use the cor function e.g. cor(x[,1], x[,2:16000]). This may be wholly unnecessary if there is some way to use the cor function by attribute i.e. correlation between attribute 1 and 2, attribute 1 and 3, attribute 1 ... N. Any help would be much appreciated.
 ID          Attribute  Metric1 
 [1,]  1         1 -1.6363007
 [2,]  2         1  1.1483294
 [3,]  3         1  2.1682566
 [4,]  4         1 -1.1823649
 [5,]  5         1 -1.3631378
 [6,]  1         2 -1.1715544
 [7,]  2         2  1.5164278
 [8,]  3         2 -1.0110274
 [9,]  4         2 -0.9421652
[10,]  5         2 -0.2105443
[11,]  6         2 -0.4143548
[12,]  7         2 -1.6170975
[13,]  8         2  1.2402303
[14,]  9         2  0.4460047
[15,]  7         3  0.1060407
[16,]  8         3  0.9796893
[17,]  9         3  0.9254911
[18,] 10         3 -1.5728600
[19,] 11         3 -0.8082675
[20,] 12         3 -1.8643084
Transformation:
ID  attribute1  attribute2  attribute3
1   -1.6363007  -1.1715544  na
2   1.1483294   1.5164278   na
3   2.1682566   -1.0110274  na
4   -1.1823649  -0.9421652  na
5   -1.3631378  -0.2105443  na
6   na          -0.4143548  na
7   na          -1.6170975  0.1060407
8   na           1.2402303  0.9796893
9   na           0.4460047  0.9254911
10  na           na         -1.57286
11  na           na         -0.8082675
12  na           na         -1.8643084
test <- cbind(c(rep(1,5),rep(2,9),rep(3,6)), replicate(1,rnorm(20)))
test <- cbind(c(1:5,1:9,7:12),test)
@Aaron
q <- matrix(nrow=20,ncol=3)
colnames(q) <- c("x","y","z")
q[,3] <- replicate(1, rnorm(20))
q[,2] <- c(101,102,103,104,105,106, 107, 108, 101,103,107,109, 104,110,102,103,106,109,108,112)
q[15:20,1] <- 10000003
q[9:14,1] <- 10000002
q[1:8,1] <- 10000001
q <- data.frame(q)
q$x <- factor(q$x)
q$y <- factor(q$y)
q$z <- factor(q$z)
with(q, {
  out <- matrix(nrow=nlevels(x), ncol=nlevels(y),
                dimnames=list(levels(x), levels(y)))
  out[cbind(x, y)] <- z
  out
})
 
     
     
    