This should at the least get your started. The simplest way I could think of to get the adjacency matrix is to reshape this and then build a graph using igraph as follows:
# load data
df <- read.table(header=T, stringsAsFactors=F, text="     V1      V2     V3
 164885   431072   3
 164885   164885   24
 431072   431072   5")
> df
#       V1     V2 V3
# 1 164885 431072  3
# 2 164885 164885 24
# 3 431072 431072  5
# using reshape2's dcast to reshape the matrix and set row.names accordingly
require(reshape2)
m <- as.matrix(dcast(df, V1 ~ V2, value.var = "V3", fill=0))[,2:3]
row.names(m) <- colnames(m)
> m
#        164885 431072
# 164885     24      3
# 431072      0      5
# load igraph and construct graph
require(igraph)
g <- graph.adjacency(m, mode="directed", weighted=TRUE, diag=TRUE)
> E(g)$weight # simple check
# [1] 24  3  5
# get adjacency
get.adjacency(g)
# 2 x 2 sparse Matrix of class "dgCMatrix"
#        164885 431072
# 164885      1      1
# 431072      .      1
# get shortest paths from a vertex to all other vertices
shortest.paths(g, mode="out") # check out mode = "all" and "in"
#        164885 431072
# 164885      0      3
# 431072    Inf      0