Based on the original but with some concrete examples:
import numpy as np
def mean_confidence_interval(data, confidence: float = 0.95) -> tuple[float, np.ndarray]:
    """
    Returns (tuple of) the mean and confidence interval for given data.
    Data is a np.arrayable iterable.
    ref:
        - https://stackoverflow.com/a/15034143/1601580
        - https://github.com/WangYueFt/rfs/blob/f8c837ba93c62dd0ac68a2f4019c619aa86b8421/eval/meta_eval.py#L19
    """
    import scipy.stats
    import numpy as np
    a: np.ndarray = 1.0 * np.array(data)
    n: int = len(a)
    if n == 1:
        import logging
        logging.warning('The first dimension of your data is 1, perhaps you meant to transpose your data? or remove the'
                        'singleton dimension?')
    m, se = a.mean(), scipy.stats.sem(a)
    tp = scipy.stats.t.ppf((1 + confidence) / 2., n - 1)
    h = se * tp
    return m, h
def ci_test_float():
    import numpy as np
    # - one WRONG data set of size 1 by N
    data = np.random.randn(1, 30)  # gives an error becuase len sets n=1, so not this shape!
    m, ci = mean_confidence_interval(data)
    print('-- you should get a mean and a list of nan ci (since data is in wrong format, it thinks its 30 data sets of '
          'length 1.')
    print(m, ci)
    # right data as N by 1
    data = np.random.randn(30, 1)
    m, ci = mean_confidence_interval(data)
    print('-- gives a mean and a list of length 1 for a single CI (since it thinks you have a single dat aset)')
    print(m, ci)
    # multiple data sets (7) of size N (=30)
    data = np.random.randn(30, 7)
    print('-- gives 7 CIs for the 7 data sets of length 30. 30 is the number ud want large if you were using z(p)'
          'due to the CLT.')
    m, ci = mean_confidence_interval(data)
    print(m, ci)
ci_test_float()
output:
-- you should get a mean and a list of nan ci (since data is in wrong format, it thinks its 30 data sets of length 1.
0.1431623130952463 [nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
 nan nan nan nan nan nan nan nan nan nan nan nan]
-- gives a mean and a list of length 1 for a single CI (since it thinks you have a single dat aset)
0.04947206018132864 [0.40627264]
-- gives 7 CIs for the 7 data sets of length 30. 30 is the number ud want large if you were using z(p)due to the CLT.
-0.03585104402718902 [0.31867309 0.35619134 0.34860011 0.3812853  0.44334033 0.35841138
 0.40739732]
I think the Num_samples by Num_datasets is right but if it's not let me know in the comment section.
For what type of data does it work for?
I think it can be used for any data because of the following:
I believe it is fine since the mean and std are calculated for general numeric data and the z_p/t_p value only takes in the confidence interval and data size, so it is independent of assumptions on the distribution of data.
So it can be used for regression & classification I believe.
As a bonus, a torch implementation that nearly only uses torch only:
def torch_compute_confidence_interval(data: Tensor,
                                      confidence: float = 0.95
                                      ) -> Tensor:
    """
    Computes the confidence interval for a given survey of a data set.
    """
    n: int = len(data)
    mean: Tensor = data.mean()
    # se: Tensor = scipy.stats.sem(data)  # compute standard error
    # se, mean: Tensor = torch.std_mean(data, unbiased=True)  # compute standard error
    se: Tensor = data.std(unbiased=True) / (n ** 0.5)
    t_p: float = float(scipy.stats.t.ppf((1 + confidence) / 2., n - 1))
    ci = t_p * se
    return mean, ci
Some comments on CI (or see https://stats.stackexchange.com/questions/554332/confidence-interval-given-the-population-mean-and-standard-deviation?noredirect=1&lq=1):
"""
Review for confidence intervals. Confidence intervals say that the true mean is inside the estimated confidence interval
(the r.v. the user generates). In particular it says:
    Pr[mu^* \in [mu_n +- t.val(p) * std_n / sqrt(n) ] ] >= p
e.g. p = 0.95
This does not say that for a specific CI you compute the true mean is in that interval with prob 0.95. Instead it means
that if you surveyed/sampled 100 data sets D_n = {x_i}^n_{i=1} of size n (where n is ideally >=30) then for 95 of those
you'd expect to have the truee mean inside the CI compute for that current data set. Note you can never check for which
ones mu^* is in the CI since mu^* is unknown. If you knew mu^* you wouldn't need to estimate it. This analysis assumes
that the the estimator/value your estimating is the true mean using the sample mean (estimator). Since it usually uses
the t.val or z.val (second for the standardozed r.v. of a normal) then it means the approximation that mu_n ~ gaussian
must hold. This is most likely true if n >= 0. Note this is similar to statistical learning theory where we use
the MLE/ERM estimator to choose a function with delta, gamma etc reasoning. Note that if you do algebra you can also
say that the sample mean is in that interval but wrt mu^* but that is borning, no one cares since you do not know mu^*
so it's not helpful.
An example use could be for computing the CI of the loss (e.g. 0-1, CE loss, etc). The mu^* you want is the expected
risk. So x_i = loss(f(x_i), y_i) and you are computing the CI for what is the true expected risk for that specific loss
function you choose. So mu_n = emperical mean of the loss and std_n = (unbiased) estimate of the std and then you can
simply plug in the values.
Assumptions for p-CI:
    - we are making a statement that mu^* is in mu+-pCI = mu+-t_p * sig_n / sqrt n, sig_n ~ Var[x] is inside the CI
    p% of the time.
    - we are estimating mu^, a mean
    - since the quantity of interest is mu^, then the z_p value (or p-value, depending which one is the unknown), is
    computed using the normal distribution.
    - p(mu) ~ N(mu; mu_n, sig_n/ sqrt n), vial CTL which holds for sample means. Ideally n >= 30.
    - x ~ p^*(x) are iid.
Std_n vs t_p*std_n/ sqrt(n)
    - std_n = var(x) is more pessimistic but holds always. Never shrinks as n->infity
    - but if n is small then pCI might be too small and your "lying to yourself". So if you have very small data
    perhaps doing std_n for the CI is better. That holds with prob 99.9%. Hopefuly std is not too large for your
    experiments to be invalidated.
ref:
    - https://stats.stackexchange.com/questions/554332/confidence-interval-given-the-population-mean-and-standard-deviation?noredirect=1&lq=1
    - https://stackoverflow.com/questions/70356922/what-is-the-proper-way-to-compute-95-confidence-intervals-with-pytorch-for-clas
    - https://www.youtube.com/watch?v=MzvRQFYUEFU&list=PLUl4u3cNGP60hI9ATjSFgLZpbNJ7myAg6&index=205
"""