type 'a strip_result =
| No_match
| Too_short
| Tail of 'a list
(** [try_strip li subli] tries to
    remove the prefix [subli] from the list [li] *)
let rec try_strip li subli = match li, subli with
  | _, [] -> Tail li
  | [], _ -> Too_short
  | hli::tli, hsub::tsub ->
    if hli <> hsub then No_match
    else try_strip tli tsub
let rec replace_sublist li from_sub to_sub =
  match li with
    | [] -> []
    | head::tail ->
      match try_strip li from_sub with
        | Too_short -> li
        | No_match -> head :: replace_sublist tail from_sub to_sub
        | Tail rest -> to_sub @ replace_sublist rest from_sub to_sub
let test =
  (* simple replace *)
  assert (replace_sublist [1;2;3;4] [2;3] [-2;-3] = [1;-2;-3;4]);
  (* multiple replace *)
  assert (replace_sublist [1;2;3;2;4] [2] [0] = [1;0;3;0;4]);
  (* stop while partial match *)
  assert (replace_sublist [1;2;3;4] [3;4;5] [0] = [1;2;3;4]);
  (* stop at match *)
  assert (replace_sublist [1;2;3;4] [3;4] [2;1] = [1;2;2;1]);
  (* tricky repeating sublist case *)
  assert (replace_sublist [2;2;3] [2;3] [0] = [2;0]);
  ()
(* tail-rec version: instead of concatenating elements before
   the recursive call
     head :: replace_sublist ...
     to_sub @ replace_sublist ...
   keep an accumulator parameter `acc` to store the partial result,
   in reverse order
     replace (t :: acc) ...
     replace (List.rev_append to_sub acc) ...
*)
let replace_sublist li from_sub to_sub =
  let rec replace acc li = match li with
    | [] -> List.rev acc
    | head::tail as li ->
      match try_strip li from_sub with
        | Too_short -> List.rev (List.rev_append li acc)
        | No_match -> replace (head :: acc) tail
        | Tail rest -> replace (List.rev_append to_sub acc) rest
  in replace [] li
PS: it is well-known that this algorithm can be improved by moving, after try_strip failed, not just to the next element in the list but by some number of elements that we know cannot start a new match. However, this number of elements to jump over is not something simple like List.length from_sub - 1, it needs to be precomputed from the pattern structure (it depends from the presence of "tricky repeating sublists"). This is the Knuth-Morris-Pratt algorithm.