My problem is how to calculate frequencies on multiple variables in pandas . I have from this dataframe :
d1 = pd.DataFrame( {'StudentID': ["x1", "x10", "x2","x3", "x4", "x5", "x6",   "x7",     "x8", "x9"],
                       'StudentGender' : ['F', 'M', 'F', 'M', 'F', 'M', 'F', 'M', 'M', 'M'],
                 'ExamenYear': ['2007','2007','2007','2008','2008','2008','2008','2009','2009','2009'],
                 'Exam': ['algebra', 'stats', 'bio', 'algebra', 'algebra', 'stats', 'stats', 'algebra', 'bio', 'bio'],
                 'Participated': ['no','yes','yes','yes','no','yes','yes','yes','yes','yes'],
                  'Passed': ['no','yes','yes','yes','no','yes','yes','yes','no','yes']},
                  columns = ['StudentID', 'StudentGender', 'ExamenYear', 'Exam', 'Participated', 'Passed'])
To the following result
             Participated  OfWhichpassed
 ExamenYear                             
2007                   3              2
2008                   4              3
2009                   3              2
(1) One possibility I tried is to compute two dataframe and bind them
t1 = d1.pivot_table(values = 'StudentID', rows=['ExamenYear'], cols = ['Participated'], aggfunc = len)
t2 = d1.pivot_table(values = 'StudentID', rows=['ExamenYear'], cols = ['Passed'], aggfunc = len)
tx = pd.concat([t1, t2] , axis = 1)
Res1 = tx['yes']
(2) The second possibility is to use an aggregation function .
import collections
dg = d1.groupby('ExamenYear')
Res2 = dg.agg({'Participated': len,'Passed': lambda x : collections.Counter(x == 'yes')[True]})
 Res2.columns = ['Participated', 'OfWhichpassed']
Both ways are awckward to say the least. How is this done properly in pandas ?
P.S: I also tried value_counts instead of collections.Counter but could not get it to work
For reference: Few months ago, I asked similar question for R here and plyr could help
---- UPDATE ------
user DSM is right. there was a mistake in the desired table result.
(1) The code for option one is
 t1 = d1.pivot_table(values = 'StudentID', rows=['ExamenYear'], aggfunc = len)
 t2 = d1.pivot_table(values = 'StudentID', rows=['ExamenYear'], cols = ['Participated'], aggfunc = len)
 t3 = d1.pivot_table(values = 'StudentID', rows=['ExamenYear'], cols = ['Passed'], aggfunc = len)
 Res1 = pd.DataFrame( {'All': t1,
                       'OfWhichParticipated': t2['yes'],
                     'OfWhichPassed': t3['yes']})
It will produce the result
             All  OfWhichParticipated  OfWhichPassed
ExamenYear                                         
2007          3                    2              2
2008          4                    3              3
2009          3                    3              2
(2) For Option 2, thanks to user herrfz, I figured out how to use value_count and the code will be
Res2 = d1.groupby('ExamenYear').agg({'StudentID': len,
                                 'Participated': lambda x: x.value_counts()['yes'],
                                 'Passed': lambda x: x.value_counts()['yes']})
Res2.columns = ['All', 'OfWgichParticipated', 'OfWhichPassed']
which will produce the same result as Res1
My question remains though:
Using Option 2, will it be possible to use the same Variable twice (for another operation ?) can one pass a custom name for the resulting variable ?
---- A NEW UPDATE ----
I have finally decided to use apply which I understand is more flexible.
 
     
     
     
    