I think meta-programming is the right term here.
I want to be able to use data.table much like one would use MySQL in say a webapp. That is, web users use some web front-end (like Shiny server for example) to select a data-base, select columns to filter on, select columns to group-by, select columns to aggregate and aggregation functions. I want to use R and data.table as a backend for querying, aggregation etc. Assume that front end exists and R has these variables as character strings and they are validated etc.
I wrote the following function to build the data.table expression and use the parse/eval meta-programming functionality of R to run it. Is this a reasonable way to do this?
I includes all relevant code to test this. Source this code (after reading it for security!) and run test_agg_meta() to test it. It is just a start. I could add more functionality.
But my main question is whether I am grossly over-thinking this. Is there is a more direct way to use data.table when all of the inputs are undetermined before hand without resorting to parse/eval meta-programming?
I am also aware of the "with" statement and some of the other sugarless-functional methods but don't know if they can take care of all cases.
require(data.table)
fake_data<-function(num=12){
  #make some fake data
  x=1:num
  lets=letters[1:num]
  data=data.table(
    u=rep(c("A","B","C"),floor(num/3)),
    v=x %%2, w=lets, x=x, y=x^2, z=1-x)
  return(data)
}
data_table_meta<-function(
  #aggregate a data.table meta-programmatically
  data_in=fake_data(),
  filter_cols=NULL,
  filter_min=NULL,
  filter_max=NULL,
  groupby_cols=NULL,
  agg_cols=setdiff(names(data_in),groupby_cols),
  agg_funcs=NULL,
  verbose=F,
  validate=T,
  jsep="_"
){
  all_cols=names(data_in)
  if (validate) {
    stopifnot(length(filter_cols) == length(filter_min))
    stopifnot(length(filter_cols) == length(filter_max))
    stopifnot(filter_cols %in% all_cols)
    stopifnot(groupby_cols %in% all_cols)
    stopifnot(length(intersect(agg_cols,groupby_cols)) == 0)
    stopifnot((length(agg_cols) == length(agg_funcs))  | (length(agg_funcs)==1) | (length(agg_funcs)==0))
  }
  #build the command
  #defaults
  i_filter=""
  j_select=""
  n_agg_funcs=length(agg_funcs)
  n_agg_cols=length(agg_cols)
  n_groupby_cols=length(groupby_cols)
  if (n_agg_funcs == 0) {
    #NULL
    print("NULL")
    j_select=paste(agg_cols,collapse=",")
    j_select=paste("list(",j_select,")")
  } else {
    agg_names=paste(agg_funcs,agg_cols,sep=jsep)
    jsels=paste(agg_names,"=",agg_funcs,"(",agg_cols,")",sep="")
    if (n_groupby_cols>0) jsels=c(jsels,"N_Rows_Aggregated=.N")
    j_select=paste(jsels,collapse=",")
    j_select=paste("list(",j_select,")")
  }
  groupby=""
  if (n_groupby_cols>0) {
    groupby=paste(groupby_cols,collapse=",")
    groupby=paste("by=list(",groupby,")",sep="")
  }
  n_filter_cols=length(filter_cols)
  if (n_filter_cols > 0) {
    i_filters=rep("",n_filter_cols)
    for (i in 1:n_filter_cols) {
      i_filters[i]=paste(" (",filter_cols[i]," >= ",filter_min[i]," & ",filter_cols[i]," <= ",filter_max[i],") ",sep="")
    }
    i_filter=paste(i_filters,collapse="&")
  }
  command=paste("data_in[",i_filter,",",j_select,",",groupby,"]",sep="")
  if (verbose == 2) {
    print("all_cols:")
    print(all_cols)
    print("filter_cols:")
    print(filter_cols)
    print("agg_cols:")
    print(agg_cols)
    print("filter_min:")
    print(filter_min)
    print("filter_max:")
    print(filter_max)
    print("groupby_cols:")
    print(groupby_cols)
    print("agg_cols:")
    print(agg_cols)
    print("agg_funcs:")
    print(agg_funcs)
    print("i_filter")
    print(i_filter)
    print("j_select")
    print(j_select)
    print("groupby")
    print(groupby)
    print("command")
    print(command)
  }
  print(paste("evaluating command:",command))
  eval(parse(text=command))
}
my_agg<-function(data=fake_data()){
  data_out=data[
    i=x<=5,
    j=list(
      mean_x=mean(x),
      mean_y=mean(y),
      sum_z=sum(z),
      N_Rows_Aggregated=.N
    ),
    by=list(u,v)]
  return(data_out)
}
my_agg_meta<-function(data=fake_data()){
  #should give same results as my_agg
  data_out=data_table_meta(data,
      filter_cols=c("x"),
      filter_min=c(-10000),
      filter_max=c(5),
      groupby_cols=c("u","v"),
      agg_cols=c("x","y","z"),
      agg_funcs=c("mean","mean","sum"),
      verbose=T,
      validate=T,
      jsep="_")
  return(data_out)
}
test_agg_meta<-function(){
  stopifnot(all(my_agg()==my_agg_meta()))
  print("Congrats, you passed the test")
}
 
     
    