I am implementing a password cracker for college work using PyCUDA. Everything seems to be working correctly except the implementation of the NTLM algorithm on CUDA.
To test it out, I created a small module that launches a kernel with only 1 thread, hashes a value and returns it for comparison with the hash obtained on the CPU. Here is the code below:
import pycuda.autoinit
import pycuda.driver as cuda
from pycuda.compiler import SourceModule
import numpy
from passlib.hash import nthash
mod = SourceModule(
"""
#include <string.h>
#include <stdio.h>
#define INIT_A 0x67452301
#define INIT_B 0xefcdab89
#define INIT_C 0x98badcfe
#define INIT_D 0x10325476
#define SQRT_2 0x5a827999
#define SQRT_3 0x6ed9eba1
__device__ void NTLM(char *, int, char*);
//__device__ char hex_format[33];
__device__ __constant__ char itoa16[17] = "0123456789ABCDEF";
__global__ void NTBruteforce(char *hex_format){   
    int i;
    char test[4] = {'t', 'h', 'e', 'n'};
    NTLM(test, 4, hex_format);      
}
__device__ void NTLM(char *key, int key_length, char *hex_format) {
    unsigned int nt_buffer[16];
    unsigned int output[4];
    //Globals for rounds
    unsigned int a = INIT_A;
    unsigned int b = INIT_B;
    unsigned int c = INIT_C;
    unsigned int d = INIT_D;
    // Prepare the string for hash calculation
    int i;
    int length = key_length;
    //memset(nt_buffer, 0, 4);
    for (i = 0; i < length / 2; i++)
        nt_buffer[i] = key[2 * i] | (key[2 * i + 1] << 16);
    //padding
    if (length % 2 == 1)
        nt_buffer[i] = key[length - 1] | 0x800000;
    else
        nt_buffer[i] = 0x80;
    //put the length
    nt_buffer[14] = length << 4;
    // NTLM hash calculation
    /* Round 1 */
    a += (d ^ (b & (c ^ d))) + nt_buffer[0];
    a = (a << 3) | (a >> 29);
    d += (c ^ (a & (b ^ c))) + nt_buffer[1];
    d = (d << 7) | (d >> 25);
    c += (b ^ (d & (a ^ b))) + nt_buffer[2];
    c = (c << 11) | (c >> 21);
    b += (a ^ (c & (d ^ a))) + nt_buffer[3];
    b = (b << 19) | (b >> 13);
    a += (d ^ (b & (c ^ d))) + nt_buffer[4];
    a = (a << 3) | (a >> 29);
    d += (c ^ (a & (b ^ c))) + nt_buffer[5];
    d = (d << 7) | (d >> 25);
    c += (b ^ (d & (a ^ b))) + nt_buffer[6];
    c = (c << 11) | (c >> 21);
    b += (a ^ (c & (d ^ a))) + nt_buffer[7];
    b = (b << 19) | (b >> 13);
    a += (d ^ (b & (c ^ d))) + nt_buffer[8];
    a = (a << 3) | (a >> 29);
    d += (c ^ (a & (b ^ c))) + nt_buffer[9];
    d = (d << 7) | (d >> 25);
    c += (b ^ (d & (a ^ b))) + nt_buffer[10];
    c = (c << 11) | (c >> 21);
    b += (a ^ (c & (d ^ a))) + nt_buffer[11];
    b = (b << 19) | (b >> 13);
    a += (d ^ (b & (c ^ d))) + nt_buffer[12];
    a = (a << 3) | (a >> 29);
    d += (c ^ (a & (b ^ c))) + nt_buffer[13];
    d = (d << 7) | (d >> 25);
    c += (b ^ (d & (a ^ b))) + nt_buffer[14];
    c = (c << 11) | (c >> 21);
    b += (a ^ (c & (d ^ a))) + nt_buffer[15];
    b = (b << 19) | (b >> 13);
    /* Round 2 */
    a += ((b & (c | d)) | (c & d)) + nt_buffer[0] + SQRT_2;
    a = (a << 3) | (a >> 29);
    d += ((a & (b | c)) | (b & c)) + nt_buffer[4] + SQRT_2;
    d = (d << 5) | (d >> 27);
    c += ((d & (a | b)) | (a & b)) + nt_buffer[8] + SQRT_2;
    c = (c << 9) | (c >> 23);
    b += ((c & (d | a)) | (d & a)) + nt_buffer[12] + SQRT_2;
    b = (b << 13) | (b >> 19);
    a += ((b & (c | d)) | (c & d)) + nt_buffer[1] + SQRT_2;
    a = (a << 3) | (a >> 29);
    d += ((a & (b | c)) | (b & c)) + nt_buffer[5] + SQRT_2;
    d = (d << 5) | (d >> 27);
    c += ((d & (a | b)) | (a & b)) + nt_buffer[9] + SQRT_2;
    c = (c << 9) | (c >> 23);
    b += ((c & (d | a)) | (d & a)) + nt_buffer[13] + SQRT_2;
    b = (b << 13) | (b >> 19);
    a += ((b & (c | d)) | (c & d)) + nt_buffer[2] + SQRT_2;
    a = (a << 3) | (a >> 29);
    d += ((a & (b | c)) | (b & c)) + nt_buffer[6] + SQRT_2;
    d = (d << 5) | (d >> 27);
    c += ((d & (a | b)) | (a & b)) + nt_buffer[10] + SQRT_2;
    c = (c << 9) | (c >> 23);
    b += ((c & (d | a)) | (d & a)) + nt_buffer[14] + SQRT_2;
    b = (b << 13) | (b >> 19);
    a += ((b & (c | d)) | (c & d)) + nt_buffer[3] + SQRT_2;
    a = (a << 3) | (a >> 29);
    d += ((a & (b | c)) | (b & c)) + nt_buffer[7] + SQRT_2;
    d = (d << 5) | (d >> 27);
    c += ((d & (a | b)) | (a & b)) + nt_buffer[11] + SQRT_2;
    c = (c << 9) | (c >> 23);
    b += ((c & (d | a)) | (d & a)) + nt_buffer[15] + SQRT_2;
    b = (b << 13) | (b >> 19);
    /* Round 3 */
    a += (d ^ c ^ b) + nt_buffer[0] + SQRT_3;
    a = (a << 3) | (a >> 29);
    d += (c ^ b ^ a) + nt_buffer[8] + SQRT_3;
    d = (d << 9) | (d >> 23);
    c += (b ^ a ^ d) + nt_buffer[4] + SQRT_3;
    c = (c << 11) | (c >> 21);
    b += (a ^ d ^ c) + nt_buffer[12] + SQRT_3;
    b = (b << 15) | (b >> 17);
    a += (d ^ c ^ b) + nt_buffer[2] + SQRT_3;
    a = (a << 3) | (a >> 29);
    d += (c ^ b ^ a) + nt_buffer[10] + SQRT_3;
    d = (d << 9) | (d >> 23);
    c += (b ^ a ^ d) + nt_buffer[6] + SQRT_3;
    c = (c << 11) | (c >> 21);
    b += (a ^ d ^ c) + nt_buffer[14] + SQRT_3;
    b = (b << 15) | (b >> 17);
    a += (d ^ c ^ b) + nt_buffer[1] + SQRT_3;
    a = (a << 3) | (a >> 29);
    d += (c ^ b ^ a) + nt_buffer[9] + SQRT_3;
    d = (d << 9) | (d >> 23);
    c += (b ^ a ^ d) + nt_buffer[5] + SQRT_3;
    c = (c << 11) | (c >> 21);
    b += (a ^ d ^ c) + nt_buffer[13] + SQRT_3;
    b = (b << 15) | (b >> 17);
    a += (d ^ c ^ b) + nt_buffer[3] + SQRT_3;
    a = (a << 3) | (a >> 29);
    d += (c ^ b ^ a) + nt_buffer[11] + SQRT_3;
    d = (d << 9) | (d >> 23);
    c += (b ^ a ^ d) + nt_buffer[7] + SQRT_3;
    c = (c << 11) | (c >> 21);
    b += (a ^ d ^ c) + nt_buffer[15] + SQRT_3;
    b = (b << 15) | (b >> 17);
    output[0] = a + 0x67452301;
    output[1] = b + 0xefcdab89;
    output[2] = c + 0x98badcfe;
    output[3] = d + 0x10325476;
    //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    // Convert the hash to hex (for being readable)
    //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    for(i=0; i<4; i++)
        {
            int j = 0;
            unsigned int n = output[i];
            //iterate the bytes of the integer
            for(; j<4; j++)
            {
                unsigned int convert = n % 256;
                hex_format[i * 8 + j * 2 + 1] = itoa16[convert % 16];
                convert = convert / 16;
                hex_format[i * 8 + j * 2 + 0] = itoa16[convert % 16];
                n = n / 256;
            }
        }       
} 
""")
expected = nthash.encrypt('then')
data = numpy.array(expected)
cleartext = numpy.zeros_like(data)
cleartext_gpu = cuda.mem_alloc(data.nbytes)
func = mod.get_function('NTBruteforce')
func(cleartext_gpu, block=(1,1,1))
cuda.memcpy_dtoh(cleartext, cleartext_gpu)
print 'Expected: {}'.format(expected.upper())
print "GPU     : {}".format(cleartext.tostring())
The problem is that I get different results on consecutive runs. Sometimes I get the correct result a few times in a row, but the next time I run it (after 2-3 secs), the result is wrong. My output looks like this:
Expected: 35B5C3F393D57F7836FF61514BCF1289
GPU     : 90ABFDFAA5F9F1F25DAF679A3FC1331F
Expected: 35B5C3F393D57F7836FF61514BCF1289
GPU     : 4A3F30740C38FC259867716DF887349B
Expected: 35B5C3F393D57F7836FF61514BCF1289
GPU     : 2CA784517A80BBE10437EE88CFDEC269
Expected: 35B5C3F393D57F7836FF61514BCF1289
GPU     : 35B5C3F393D57F7836FF61514BCF1289
Expected: 35B5C3F393D57F7836FF61514BCF1289
GPU     : 35B5C3F393D57F7836FF61514BCF1289
Expected: 35B5C3F393D57F7836FF61514BCF1289
GPU     : 8EA84AB098A6C8E37FFF1F6440127273
The above output is just an example of running the program a few times consecutively. As you can see I get the correct result sometimes (and sometimes consecutively as well) but other times the result is wrong and I don't understand why.
I've tried re-installing the CUDA SDK (version 4.2.9) and rebooting my computer but the same thing happens.
Using Windows 7 64-bit, Geforce GT240
Any ideas?
 
     
    