I have wrote a simple sum reduction code which seems to work just fine until i increase array size to 1 million what can be the problem.
#define BLOCK_SIZE 128
#define ARRAY_SIZE 10000
cudaError_t addWithCuda(const long *input, long *output, int totalBlocks, size_t size);
__global__ void sumKernel(const long *input, long *output)
{
    int tid = threadIdx.x;
    int bid = blockDim.x * blockIdx.x;
    __shared__ long data[BLOCK_SIZE];
    if(bid+tid < ARRAY_SIZE)
           data[tid] = input[bid+tid];
    else
           data[tid] = 0;
     __syncthreads();
    for(int i = BLOCK_SIZE/2; i >= 1; i >>= 1)
    {
        if(tid < i)
        data[tid] += data[tid + i];
        __syncthreads(); 
    }
    if(tid == 0)
        output[blockIdx.x] = data[0];
}
int main()
{    
    int totalBlocks = ARRAY_SIZE/BLOCK_SIZE;
    if(ARRAY_SIZE % BLOCK_SIZE != 0)
        totalBlocks++;
    long *input = (long*) malloc(ARRAY_SIZE * sizeof(long) );
    long *output = (long*) malloc(totalBlocks * sizeof(long) );
    for(int i=0; i<ARRAY_SIZE; i++)
    {
        input[i] = i+1 ;
    }
// Add vectors in parallel.
        cudaError_t cudaStatus = addWithCuda(input, output, totalBlocks, ARRAY_SIZE);
        if (cudaStatus != cudaSuccess) {
             fprintf(stderr, "addWithCuda failed!");
             return 1;
        }
    long ans = 0;
    for(int i =0 ; i < totalBlocks ;i++)
    {
        ans = ans + output[i];
    }
    printf("Final Ans : %ld",ans);
// cudaDeviceReset must be called before exiting in order for profiling and
// tracing tools such as Nsight and Visual Profiler to show complete traces.
cudaStatus = cudaDeviceReset();
        if (cudaStatus != cudaSuccess) {
              fprintf(stderr, "cudaDeviceReset failed!");
              return 1;
         }
     getchar();
      return 0;
}
     // Helper function for using CUDA to add vectors in parallel.
     cudaError_t addWithCuda(const long *input, long *output, int totalBlocks, size_t size)
     {
          long *dev_input = 0;
          long *dev_output = 0;
          cudaError_t cudaStatus;
// Choose which GPU to run on, change this on a multi-GPU system.
           cudaStatus = cudaSetDevice(0);
         if (cudaStatus != cudaSuccess) {
             fprintf(stderr, "cudaSetDevice failed!  Do you have a CUDA-capable GPU installed?");
             goto Error;
     }
// Allocate GPU buffers for two vectors (one input, one output)    .
     cudaStatus = cudaMalloc((void**)&dev_input, size * sizeof(long));
     if (cudaStatus != cudaSuccess) {
         fprintf(stderr, "cudaMalloc failed!");
         goto Error;
         }
cudaStatus = cudaMalloc((void**)&dev_output, totalBlocks * sizeof(long));
if (cudaStatus != cudaSuccess) {
    fprintf(stderr, "cudaMalloc failed!");
    goto Error;
}
// Copy input vectors from host memory to GPU buffers.
cudaStatus = cudaMemcpy(dev_input, input, size * sizeof(long), cudaMemcpyHostToDevice);
if (cudaStatus != cudaSuccess) {
    fprintf(stderr, "cudaMemcpy failed!");
    goto Error;
}
cudaStatus = cudaMemcpy(dev_output, output, (totalBlocks) * sizeof(long), cudaMemcpyHostToDevice);
if (cudaStatus != cudaSuccess) {
    fprintf(stderr, "cudaMemcpy failed!");
    goto Error;
}
// Launch a kernel on the GPU with one thread for each element.
sumKernel<<<totalBlocks, BLOCK_SIZE>>>(dev_input, dev_output);
// cudaDeviceSynchronize waits for the kernel to finish, and returns
// any errors encountered during the launch.
cudaStatus = cudaDeviceSynchronize();
if (cudaStatus != cudaSuccess) {
    fprintf(stderr, "cudaDeviceSynchronize returned error code %d after launching addKernel!\n", cudaStatus);
    goto Error;
}
// Copy output vector from GPU buffer to host memory.
cudaStatus = cudaMemcpy(output, dev_output, totalBlocks * sizeof(long), cudaMemcpyDeviceToHost);
if (cudaStatus != cudaSuccess) {
    fprintf(stderr, "cudaMemcpy failed!");
    goto Error;
}
Error:
cudaFree(dev_input);
cudaFree(dev_output);
return cudaStatus;
}
and just for the reference if it has to do somthing with my GPU device, my GPU is GTXX 650ti. and here is the info about GPU:
Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024
Maximum sizes of each dimension of a block: 1024 x 1024 x 64
Maximum sizes of each dimension of a grid: 2147483647 x 65535 x 65535
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
 
     
     
    