I am looking at the Floyd-Warshall algorithm.
let dist be a |V| × |V| array of minimum distances initialized to ∞ (infinity)
// part 1
for each vertex v
dist[v][v] ← 0
// part 2
for each edge (u,v)
dist[u][v] ← w(u,v) // the weight of the edge (u,v)
// part 3
for k from 1 to |V|
for i from 1 to |V|
for j from 1 to |V|
if dist[i][k] + dist[k][j] < dist[i][j] then
dist[i][j] ← dist[i][k] + dist[k][j]
In the page, it says the Floyd–Warshall algorithm assumes that there are no negative cycles. So my question is what will happen if the entry graph hides negative circle. Will the output dist represents another graph hiding negative circle? Does not part 1 invalid this?