Once the problem is stated correctly you maybe able to firstly map the parameters to lower and
upper bounds of [0,1]. You can then implement the inequalities inside your function and optimise using an algorithm which accepts basic lower and upper bound constraints. nlminb could be used but the vignette suggests the algorithm used may not be the best.
UPDATE:
With OP revised function
dumFun <- function(p){
    p[1] -> M_CD; p[2] -> M_CC; p[3] -> M_A; p[4] -> M_D; p[5] -> M_P;
    M_P <- 9*M_P; M_D <- M_P*M_D; M_A <- M_D*M_A; M_CC <- M_A*M_CC; M_CD <- M_CC*M_CD; 
    p[6] -> G_CD; p[7] -> G_CC; p[8] -> G_A; p[9] -> G_D;
    G_D <- 9*G_D; G_A <- G_D*G_A; G_CC <- G_A*G_CC; G_CD <- G_CC*G_CD; 
    p[10] -> S_CD; p[11] -> S_CC; p[12] -> S_A; p[13] -> S_D;
    S_D <- 9*S_D; S_A <- S_D*S_A; S_CC <- S_A*S_CC; S_CD <- S_CC*S_CD; 
    p[14] -> Q_CD; p[15] -> Q_CC; p[16] -> Q_A; p[17] -> Q_D; p[18] -> Q_P;
    Q_P <- 3*Q_P; Q_D <- Q_P*Q_D; Q_A <- Q_D*Q_A; Q_CC <- Q_A*Q_CC; Q_CD <- Q_CC*Q_CD; 
    ad = 0.95*M_D + 0.28*G_D + 0.43*S_D + 2.25*Q_D
    as = 0.017*M_A + 0.0064*G_A + 0.0076*S_A + 0.034*Q_A
    ccb = 0.0093*M_CC+ 0.0028*G_CC + 0.0042*S_CC + 0.0186*Q_CC
    ccd = 0.0223*M_CD + 0.0056*G_CD + 0.0078*S_CD + 0.0446*Q_CD
    apb = 1.28*M_P + 2.56*Q_P 
    r1=(1+ccb*(1+ccd))*ad*as*100/(130-apb)
    -r1
}
require(minqa)
p <- rep(.1, 18)
bobyqa(p, dumFun, lower = rep(0, length(p)), upper = rep(1, length(p)))
parameter estimates: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 
objective: -9.65605526502482 
number of function evaluations: 97 
>