Using sample data:
df = pd.DataFrame({'key1' : ['a','a','b','b','a'],
               'key2' : ['one', 'two', 'one', 'two', 'one'],
               'data1' : np.random.randn(5),
               'data2' : np. random.randn(5)})
df
    data1        data2     key1  key2
0    0.361601    0.375297    a   one
1    0.069889    0.809772    a   two
2    1.468194    0.272929    b   one
3   -1.138458    0.865060    b   two
4   -0.268210    1.250340    a   one
I'm trying to figure out how to group the data by key1 and sum only the data1 values where key2 equals 'one'.
Here's what I've tried
def f(d,a,b):
    d.ix[d[a] == b, 'data1'].sum()
df.groupby(['key1']).apply(f, a = 'key2', b = 'one').reset_index()
But this gives me a dataframe with 'None' values
index   key1    0
0       a       None
1       b       None
Any ideas here? I'm looking for the Pandas equivalent of the following SQL:
SELECT Key1, SUM(CASE WHEN Key2 = 'one' then data1 else 0 end)
FROM df
GROUP BY key1
FYI - I've seen conditional sums for pandas aggregate but couldn't transform the answer provided there to work with sums rather than counts.
Thanks in advance
 
     
     
    