I came across this and implemented easy to use functions as well as a couple of alternatives/improvements.
Improvements:
- use a periodic interpolation which ensures smooth
 
- use quadratic interpolation
 
- now works for only positive points as well
 
- using an alternative to the deprecated 
scipy.interpolate.spline function 
Alternatives:
- many different and configurable interpolation schemes
 
- a rounded-corner convex hull version
 
Hope this helps someone along the way.
import sklearn.preprocessing
import sklearn.pipeline
import scipy.spatial
import numpy as np
def calculate_hull(
        X, 
        scale=1.1, 
        padding="scale", 
        n_interpolate=100, 
        interpolation="quadratic_periodic", 
        return_hull_points=False):
    """
    Calculates a "smooth" hull around given points in `X`.
    The different settings have different drawbacks but the given defaults work reasonably well.
    Parameters
    ----------
    X : np.ndarray
        2d-array with 2 columns and `n` rows
    scale : float, optional
        padding strength, by default 1.1
    padding : str, optional
        padding mode, by default "scale"
    n_interpolate : int, optional
        number of interpolation points, by default 100
    interpolation : str or callable(ix,iy,x), optional
        interpolation mode, by default "quadratic_periodic"
    Inspired by: https://stackoverflow.com/a/17557853/991496
    """
    
    if padding == "scale":
        # scaling based padding
        scaler = sklearn.pipeline.make_pipeline(
            sklearn.preprocessing.StandardScaler(with_std=False),
            sklearn.preprocessing.MinMaxScaler(feature_range=(-1,1)))
        points_scaled = scaler.fit_transform(X) * scale
        hull_scaled = scipy.spatial.ConvexHull(points_scaled, incremental=True)
        hull_points_scaled = points_scaled[hull_scaled.vertices]
        hull_points = scaler.inverse_transform(hull_points_scaled)
        hull_points = np.concatenate([hull_points, hull_points[:1]])
    
    elif padding == "extend" or isinstance(padding, (float, int)):
        # extension based padding
        # TODO: remove?
        if padding == "extend":
            add = (scale - 1) * np.max([
                X[:,0].max() - X[:,0].min(), 
                X[:,1].max() - X[:,1].min()])
        else:
            add = padding
        points_added = np.concatenate([
            X + [0,add], 
            X - [0,add], 
            X + [add, 0], 
            X - [add, 0]])
        hull = scipy.spatial.ConvexHull(points_added)
        hull_points = points_added[hull.vertices]
        hull_points = np.concatenate([hull_points, hull_points[:1]])
    else:
        raise ValueError(f"Unknown padding mode: {padding}")
    
    # number of interpolated points
    nt = np.linspace(0, 1, n_interpolate)
    
    x, y = hull_points[:,0], hull_points[:,1]
    
    # ensures the same spacing of points between all hull points
    t = np.zeros(x.shape)
    t[1:] = np.sqrt((x[1:] - x[:-1])**2 + (y[1:] - y[:-1])**2)
    t = np.cumsum(t)
    t /= t[-1]
    # interpolation types
    if interpolation is None or interpolation == "linear":
        x2 = scipy.interpolate.interp1d(t, x, kind="linear")(nt)
        y2 = scipy.interpolate.interp1d(t, y, kind="linear")(nt)
    elif interpolation == "quadratic":
        x2 = scipy.interpolate.interp1d(t, x, kind="quadratic")(nt)
        y2 = scipy.interpolate.interp1d(t, y, kind="quadratic")(nt)
    elif interpolation == "quadratic_periodic":
        x2 = scipy.interpolate.splev(nt, scipy.interpolate.splrep(t, x, per=True, k=4))
        y2 = scipy.interpolate.splev(nt, scipy.interpolate.splrep(t, y, per=True, k=4))
    
    elif interpolation == "cubic":
        x2 = scipy.interpolate.CubicSpline(t, x, bc_type="periodic")(nt)
        y2 = scipy.interpolate.CubicSpline(t, y, bc_type="periodic")(nt)
    else:
        x2 = interpolation(t, x, nt)
        y2 = interpolation(t, y, nt)
    
    X_hull = np.concatenate([x2.reshape(-1,1), y2.reshape(-1,1)], axis=1)
    if return_hull_points:
        return X_hull, hull_points
    else:
        return X_hull
def draw_hull(
        X, 
        scale=1.1, 
        padding="scale", 
        n_interpolate=100, 
        interpolation="quadratic_periodic",
        plot_kwargs=None, 
        ax=None):
    """Uses `calculate_hull` to draw a hull around given points.
    Parameters
    ----------
    X : np.ndarray
        2d-array with 2 columns and `n` rows
    scale : float, optional
        padding strength, by default 1.1
    padding : str, optional
        padding mode, by default "scale"
    n_interpolate : int, optional
        number of interpolation points, by default 100
    interpolation : str or callable(ix,iy,x), optional
        interpolation mode, by default "quadratic_periodic"
    plot_kwargs : dict, optional
        `matplotlib.pyplot.plot` kwargs, by default None
    ax : `matplotlib.axes.Axes`, optional
        [description], by default None
    """
    if plot_kwargs is None:
        plot_kwargs = {}
    X_hull = calculate_hull(
        X, scale=scale, padding=padding, n_interpolate=n_interpolate, interpolation=interpolation)
    if ax is None:
        ax= plt.gca()
    plt.plot(X_hull[:,0], X_hull[:,1], **plot_kwargs)
def draw_rounded_hull(X, padding=0.1, line_kwargs=None, ax=None):
    """Plots a convex hull around points with rounded corners and a given padding.
    Parameters
    ----------
    X : np.array
        2d array with two columns and n rows
    padding : float, optional
        padding between hull and points, by default 0.1
    line_kwargs : dict, optional
        line kwargs (used for `matplotlib.pyplot.plot` and `matplotlib.patches.Arc`), by default None
    ax : matplotlib.axes.Axes, optional
        axes to plat on, by default None
    """
    default_line_kwargs = dict(
        color="black",
        linewidth=1
    )
    if line_kwargs is None:
        line_kwargs = default_line_kwargs
    else:
        line_kwargs = {**default_line_kwargs, **line_kwargs}
    if ax is None:
        ax = plt.gca()
    hull = scipy.spatial.ConvexHull(X)
    hull_points = X[hull.vertices]
    hull_points = np.concatenate([hull_points[[-1]], hull_points, hull_points[[0]]])
    diameter = padding * 2
    for i in range(1, hull_points.shape[0] - 1):
        # line
        
        # source: https://stackoverflow.com/a/1243676/991496
        
        norm_next = np.flip(hull_points[i] - hull_points[i + 1]) * [-1, 1]
        norm_next /= np.linalg.norm(norm_next)
        norm_prev = np.flip(hull_points[i - 1] - hull_points[i]) * [-1, 1]
        norm_prev /= np.linalg.norm(norm_prev)
        # plot line
        line = hull_points[i:i+2] + norm_next * diameter / 2
        ax.plot(line[:,0], line[:,1], **line_kwargs) 
        # arc
        angle_next = np.rad2deg(np.arccos(np.dot(norm_next, [1,0])))
        if norm_next[1] < 0:
            angle_next = 360 - angle_next
        angle_prev = np.rad2deg(np.arccos(np.dot(norm_prev, [1,0])))
        if norm_prev[1] < 0:
            angle_prev = 360 - angle_prev
        arc = patches.Arc(
            hull_points[i], 
            diameter, diameter,
            angle=0, fill=False, theta1=angle_prev, theta2=angle_next,
            **line_kwargs)
        ax.add_patch(arc)
if __name__ == '__main__':
    import numpy as np
    import matplotlib.pyplot as plt
    from matplotlib import patches
    # np.random.seed(42)
    X = np.random.random((20,2))
    fig, ax = plt.subplots(1,1, figsize=(10,10))
    ax.scatter(X[:,0], X[:,1])
    draw_rounded_hull(X, padding=0.1)
    draw_hull(X)
    
    ax.set(xlim=[-1,2], ylim= [-1,2])
    fig.savefig("_out/test.png")
