Look at how it is implemented. the STL builds vastly on templates and therefore the headers do contain the code they do.
for instance look at the stdc++ implementation here.
also interesting even though not an stl conforming bit vector is the llvm::BitVector from here.
the essence of the llvm::BitVector is a nested class called reference and suitable operator overloading to make the BitVector behaves similar to vector with some limitations. The code below is a simplified interface to show how BitVector hides a class called reference to make the real implementation almost behave like a real array of bool without using 1 byte for each value.
class BitVector {
public:
class reference {
reference &operator=(reference t);
reference& operator=(bool t);
operator bool() const;
};
reference operator[](unsigned Idx);
bool operator[](unsigned Idx) const;
};
this code here has the nice properties:
BitVector b(10, false); // size 10, default false
BitVector::reference &x = b[5]; // that's what really happens
bool y = b[5]; // implicitly converted to bool
assert(b[5] == false); // converted to bool
assert(b[6] == b[7]); // bool operator==(const reference &, const reference &);
b[5] = true; // assignment on reference
assert(b[5] == true); // and actually it does work.
This code actually has a flaw, try to run:
std::for_each(&b[5], &b[6], some_func); // address of reference not an iterator
will not work because assert( (&b[5] - &b[3]) == (5 - 3) ); will fail (within llvm::BitVector)
this is the very simple llvm version. std::vector<bool> has also working iterators in it.
thus the call for(auto i = b.begin(), e = b.end(); i != e; ++i) will work. and also std::vector<bool>::const_iterator.
However there are still limitations in std::vector<bool> that makes it behave differently in some cases.