In C, it was always true when Thing X[10]; was declared, X was the constant address of the first element(i.e. &X[0]). So you could then say:
Thing *Y = X; // Equivalent to (Thing *Y = &X[0];)
But in C++, the compiler "remembers" that the Thing array X has 10 elements, and some C++ imposed type checking rules break. Imagine we add Thing Z[20]; to the discussion.
Thing *Y = X; and Thing *Y = Z; if both allowed, would imply that a single variable could be set to Thing Arrays of length 10 and 20, which are very different (ahem) "things", as a quick look at a 2D array will reveal. This sort of justifies why the C language assumed equivalent of X and &X[0] is broken in C++.
Well, at least for some versions of C++. So best not to assume it, and use
Thing *Y = &x[0]; and Thing *Y = &Z[0] instead;
This approach has two advantages. It does what is wanted, and it actually compiles. :-)