I am a new to CUDA programming and I need help in writing a program to store images in a memory buffer. I tried modifying the code in the CUDA-OpenGL interop example, given in the CUDA-By Example book, to store 2 images one after another in a buffer. How should I write the program if I tried to avoid infinite loops but I am not sure if I succeeded? Any help in writing a correct program would be very much appreciated!
#include "book.h"
#include "cpu_bitmap.h"
#include "cuda.h"
#include <cuda_gl_interop.h>
PFNGLBINDBUFFERARBPROC    glBindBuffer     = NULL;
PFNGLDELETEBUFFERSARBPROC glDeleteBuffers  = NULL;
PFNGLGENBUFFERSARBPROC    glGenBuffers     = NULL;
PFNGLBUFFERDATAARBPROC    glBufferData     = NULL;
#define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); }
inline void gpuAssert(cudaError_t code, char *file, int line, bool abort=true)
{
 if (code != cudaSuccess) 
{
   fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
   if (abort) system ("pause");
}
}
#define     DIM    512
#define IMAGESIZE_MAX (DIM*DIM) 
GLuint  bufferObj;
cudaGraphicsResource *resource;
// based on ripple code, but uses uchar4 which is the type of data
// graphic inter op uses. see screenshot - basic2.png
__global__ void kernel( uchar4 *ptr1) 
{
    // map from threadIdx/BlockIdx to pixel position
    int x = threadIdx.x + blockIdx.x * blockDim.x;
    int y = threadIdx.y + blockIdx.y * blockDim.y;
    int offset = x + y * blockDim.x * gridDim.x ;
    // now calculate the value at that position
    float fx = x/(float)DIM - 0.5f;
    float fy = y/(float)DIM - 0.5f;
    unsigned char   green = 128 + 127 * tan( abs(fx*100) - abs(fy*100) );
    // accessing uchar4 vs unsigned char*
    ptr1[offset].x = 0;
    ptr1[offset].y = green;
    ptr1[offset].z = 0;
    ptr1[offset].w = 255;    
}
__global__ void kernel2( uchar4 *ptr2) 
{
    // map from threadIdx/BlockIdx to pixel position
    int x = threadIdx.x + blockIdx.x * blockDim.x;
    int y = threadIdx.y + blockIdx.y * blockDim.y;
    int offset = x + y * blockDim.x * gridDim.x ;
    // now calculate the value at that position
    float fx = x/(float)DIM - 0.5f;
    float fy = y/(float)DIM - 0.5f;
    unsigned char   green = 128 + 127 * tan( abs(fx*100) - abs(fy*100) );
    unsigned char orange = 1000; 
    // accessing uchar4 vs unsigned char*
    ptr2[offset].x = orange;
    ptr2[offset].y = green;
    ptr2[offset].z = 0;
    ptr2[offset].w = 255;
}
__global__ void copy ( uchar4 *pBuffer, uchar4 *Ptr )
{
   int x = threadIdx.x + blockIdx.x * blockDim.x;
   int y = threadIdx.y + blockIdx.y * blockDim.y;
   int idx = x + y * blockDim.x * gridDim.x ;
   while ( idx != DIM*DIM)
   {
    pBuffer[idx] = Ptr[idx] ;
    __syncthreads();
    }
}    
__global__ void copy2 ( uchar4 *pBuffer, uchar4 *Ptr2 )
{  
int x = threadIdx.x + blockIdx.x * blockDim.x;
    int y = threadIdx.y + blockIdx.y * blockDim.y;
    int idx = x + y * blockDim.x * gridDim.x ;
    int bdx = idx;
    while ( (idx < DIM*DIM) && (bdx < DIM*DIM) )
    {
   uchar4 temp = Ptr2[bdx];
   __syncthreads();
   pBuffer[idx+4] = temp;
   __syncthreads();
   if ((idx==DIM*DIM) && (bdx==DIM*DIM))
    {
     break;
    }
    }  
}
void key_func( unsigned char key, int x, int y ) {
    switch (key) {
     case 27:
        // clean up OpenGL and CUDA
        ( cudaGraphicsUnregisterResource( resource ) );
        glBindBuffer( GL_PIXEL_UNPACK_BUFFER_ARB, 0 );
        glDeleteBuffers( 1, &bufferObj );
        exit(0);
    }
}
void draw_func( void ) {
    // we pass zero as the last parameter, because out bufferObj is now
    // the source, and the field switches from being a pointer to a
    // bitmap to now mean an offset into a bitmap object
    glDrawPixels( DIM, DIM, GL_RGBA, GL_UNSIGNED_BYTE, 0 );
    glutSwapBuffers();
    }
    int main( int argc, char **argv ) {
    cudaDeviceProp  prop;
    int dev;
    (memset( &prop, 0, sizeof( cudaDeviceProp ) ));
    prop.major = 1;
    prop.minor = 0;
    HANDLE_ERROR( cudaChooseDevice( &dev, &prop ) );
    // tell CUDA which dev we will be using for graphic interop
    // from the programming guide:  Interoperability with OpenGL
    //     requires that the CUDA device be specified by
    //     cudaGLSetGLDevice() before any other runtime calls.
    HANDLE_ERROR(  cudaGLSetGLDevice( dev ) );
    // these GLUT calls need to be made before the other OpenGL
    // calls, else we get a seg fault
    glutInit( &argc, argv );
    glutInitDisplayMode( GLUT_DOUBLE | GLUT_RGBA );
    glutInitWindowSize( DIM, DIM );
    glutCreateWindow( "bitmap" );
    glBindBuffer    = (PFNGLBINDBUFFERARBPROC)GET_PROC_ADDRESS("glBindBuffer");
    glDeleteBuffers = (PFNGLDELETEBUFFERSARBPROC)GET_PROC_ADDRESS("glDeleteBuffers");
    glGenBuffers    = (PFNGLGENBUFFERSARBPROC)GET_PROC_ADDRESS("glGenBuffers");
    glBufferData    = (PFNGLBUFFERDATAARBPROC)GET_PROC_ADDRESS("glBufferData");
    // the first three are standard OpenGL, the 4th is the CUDA reg 
    // of the bitmap these calls exist starting in OpenGL 1.5
    glGenBuffers( 1, &bufferObj );
    glBindBuffer( GL_PIXEL_UNPACK_BUFFER_ARB, bufferObj );
    glBufferData( GL_PIXEL_UNPACK_BUFFER_ARB, DIM * DIM * 4 ,
              NULL, GL_DYNAMIC_DRAW_ARB );
// REGISTER THE GL BufferObj and CUDA Resource
    HANDLE_ERROR(( cudaGraphicsGLRegisterBuffer( &resource, 
                                  bufferObj, 
                                  cudaGraphicsMapFlagsNone ) ));
    // do work with the memory dst being on the GPU, gotten via mapping
    HANDLE_ERROR( cudaGraphicsMapResources( 1, &resource, NULL ) );
    uchar4* devPtr;
    size_t  size = DIM*DIM;
    size_t  sizet = 2*DIM*DIM;
    gpuErrchk(cudaMalloc ( (uchar4 **)&devPtr,  size)); 
    uchar4 *devPtr2; 
    gpuErrchk(cudaMalloc ( (uchar4 **)&devPtr2,  size)); 
uchar4 *pBuffer;
gpuErrchk(cudaMalloc ( (uchar4 **)&pBuffer,  size));
uchar4 *pBufferCurrent;
gpuErrchk(cudaMalloc ( (uchar4 **)&pBuffer,  size));
uchar4 *pBufferImage;
gpuErrchk(cudaMalloc ( (uchar4 **)&pBufferImage,  sizet));
    // REGISTER THE C BUFFER and CUDA Resource
    HANDLE_ERROR( cudaGraphicsResourceGetMappedPointer( (void**)&pBufferImage,  
                                          &size, 
                                          resource) );
    dim3    grids(DIM/16,DIM/16);
    dim3    threads(16,16);
    kernel<<<grids,threads>>>( devPtr );
gpuErrchk( cudaPeekAtLastError() );
gpuErrchk( cudaDeviceSynchronize() );
    kernel2<<<grids,threads>>>(devPtr2);
gpuErrchk( cudaPeekAtLastError() );
gpuErrchk( cudaDeviceSynchronize() );    
    int a = 1;
do 
{
if (a==1)
{
copy<<< 512, 512>>>(pBufferImage, devPtr);
gpuErrchk( cudaPeekAtLastError() );
gpuErrchk( cudaDeviceSynchronize() );
}
if(a==2)
{
copy2<<< 512, 512>>>(pBufferImage, devPtr2);
gpuErrchk( cudaPeekAtLastError() );
gpuErrchk( cudaDeviceSynchronize() );
}
a++;
} while (a<=2); 
HANDLE_ERROR ( cudaGraphicsUnmapResources( 1, &resource, NULL ) );
// set up GLUT and kick off main loop
glutKeyboardFunc( key_func );
glutDisplayFunc( draw_func );
glutMainLoop();
}
 
    