I have two dataframes: tr is a training-set, ts is a test-set.
They contain columns uid (a user_id), categ (a categorical), and response.
response is the dependent variable I'm trying to predict in ts.
I am trying to compute the mean of response in tr, broken out by columns uid and categ:
avg_response_uid_categ = tr.groupby(['uid','categ']).response.mean()
This gives the result but (unwantedly) the dataframe index is a MultiIndex. (this is the groupby(..., as_index=True) behavior):
MultiIndex[--5hzxWLz5ozIg6OMo6tpQ  SomeValueOfCateg, --65q1FpAL_UQtVZ2PTGew  AnotherValueofCateg, ...
But instead I want the result to keep the two columns 'uid', 'categ' and keep them separate.
Should I use aggregate() instead of groupby()?
Trying groupby(as_index=False) is useless.
