t0 - t1 < 0 is better then t0 < t1 when we are sure that real difference of values (before overflow) is not grater than half or size of set that contains all possible values.
For nanoseconds it will be approximately 292 years (nanoseconds are stored in long and half of long size is 2^64/2 = 2^63 nanoseconds ~= 292 years).  
So for time samples separated with less then 292 years we should use t0 - t1 < 0 to get correct results.
To better visualize it lets say that cycle contains 8 possible values which are -4, -3, -2, -1 ,0, 1, 2, 3.  
So timeline can look like 
real time values:  .., -6, -5, -4, -3, -2, -1,  0,  1,  2,  3,  4,  5,  6,  7, ..
overflowed values: ..,  2,  3, -4, -3, -2, -1,  0,  1,  2,  3, -4, -3, -2, -1, ..
Lets take a look how t0 - t1 < 0 and t0 < t1 will behave for values where difference will be and wont be greater than 4 (half of cycle size, and -4 is minimal value which means it can be minimal result for calculating delta). Notice that only t0 - t1 < 0 will give correct results when t1 overflows
- delta = 1 with overflow of bigger value (notice: we don't make lesser value overflow because it would mean that both values are in the same cycle so calculations would be same as if there wouldn't be any overflow) - 
- real values: t0 = 3t1 = 4
- overflowed:  t0 = 3t1 = -4
- t0 < t1==>- 3 < -4-> false
- t0 - t1 < 0==>- 3 - (-4) < 0==>- -1 < 0(7 overflows to -1) true
 - so only for - t0 - t1 < 0we got correct result despite or maybe thanks to overflow.
 
- delta = 1 but this time no overflow  - a) positive values - 
- t0 = 2,- t1 = 3
- 2 < 3true
- 2 - 3 < 0==>- -1 < 0true
 - b) negative values - 
- t0 = -4,- t1 = -3
- -4 < -3true
- -4 - (-3) < 0==>- -1 < 0true
 - for rest of cases where real delta = 1 we will also get correct results for both - t0 < t1and- t0 - t1 < 0tests (- t0 - t1will be always- -1)
 
- delta = 3 (almost half of cycle) - a1) with overflow of bigger value - 
- real values: t0 = 3t1 = 6
- overflowed:  t0 = 3t1 = -2
- t0 < t1==>- 3 < -2-> false
- t0 - t1 < 0==>- 3 - (-2) < 0==>- -3 < 0(5 overflows to -3) true
 - a2) another case with overflow - 
- real values: t0 = 2t1 = 5
- overflowed:  t0 = 2t1 = -3
- t0 < t1==>- 2 < -3-> false
- t0 - t1 < 0==>- 2 - (-3) < 0==>- -3 < 0(again 5 overflows to -3) true
 
 So again only- t0 - t1 < 0gave correct result.
 - b) without overflow - t0 - t1will always be equal to- -3(-delta) so this will always be giving correct result.- t0 < t1will also give correct resilt
 - 
- real values: t0 = -1t1 = 2
- t0 < t1==>- -1 < 2-> true
- t0 - t1 < 0==>- -1 - 2 < 0==>- -3 < 0true
 
- delta = 4 result of - t0 - t1will always be equal to- -4so it will also be- <0.
 - examples with overflow
 a1)
 - 
- real values: t0 = 0t1 = 4
- overflowed:  t0 = 0t1 = -4
- t0 < t1==>- 0 < -4-> false
- t0 - t1 < 0==>- 0 - (-4) < 0==>- -4 < 0(4 overflows to -4) true
 - a2)   - 
- real values: t0 = 1t1 = 5
- overflowed:  t0 = 1t1 = -3
- t0 < t1==>- 1 < -4-> false
- t0 - t1 < 0==>- 1 - (-3) < 0==>- -4 < 0(4 overflows to -4) true
 - So again only - t0 - t1 < 0give correct results.
 - Examples without overflow obviously will be correct for both tests. 
- delta = 5 (and more) - a1) with overflow
 (minimal value tor t0 is -1 so lets start with it)
 - 
- real values: t0 = -1t1 = 4
- overflowed:  t0 = -1t1 = -4
- t0 < t1==>- -1 < -4-> false
- t0 - t1 < 0==>- -1 - (-4) < 0==>- 3 < 0false
 - a2) with overflow - 
- real values: t0 = 1t1 = 6
- overflowed:  t0 = 1t1 = -2
- t0 < t1==>- 1 < -2-> false
- t0 - t1 < 0==>- 1 - (-2) < 0==>- 3 < 0false 
both tests failed
 - b1) without overflow - 
- t0 = -4,- t1 = 1
- -4 < 1true
- -4 - 1 < 0==>- 3 < 0(-5 overflows to 3) false
 
+-------------+-----------------------------+----------------------------+
|  tests if   | delta <= size of half cycle | delta > size of half cycle |
| t0 is less  |-----------------------------|----------------------------|
|  than t1    |  overflow  |  no overflow   | overflow  |  no overflow   |
|-------------|------------|----------------|-----------|----------------|
|   t0 < t1   |      -     |       +        |     -     |       +        |
|-------------|------------|----------------|-----------|----------------|
| t0 - t1 < 0 |      +     |       +        |     -     |       +        |
|-------------|------------|----------------|-----------|----------------|
| t0 - t1 > 0 |      -     |       -        |     +     |       -        |
+-------------+------------+----------------+-----------+----------------+