Here is a little class that uses the Bose-Nelson algorithm to generate a sorting network on compile time.    
/**
 * A Functor class to create a sort for fixed sized arrays/containers with a
 * compile time generated Bose-Nelson sorting network.
 * \tparam NumElements  The number of elements in the array or container to sort.
 * \tparam T            The element type.
 * \tparam Compare      A comparator functor class that returns true if lhs < rhs.
 */
template <unsigned NumElements, class Compare = void> class StaticSort
{
    template <class A, class C> struct Swap
    {
        template <class T> inline void s(T &v0, T &v1)
        {
            T t = Compare()(v0, v1) ? v0 : v1; // Min
            v1 = Compare()(v0, v1) ? v1 : v0; // Max
            v0 = t;
        }
        inline Swap(A &a, const int &i0, const int &i1) { s(a[i0], a[i1]); }
    };
    template <class A> struct Swap <A, void>
    {
        template <class T> inline void s(T &v0, T &v1)
        {
            // Explicitly code out the Min and Max to nudge the compiler
            // to generate branchless code.
            T t = v0 < v1 ? v0 : v1; // Min
            v1 = v0 < v1 ? v1 : v0; // Max
            v0 = t;
        }
        inline Swap(A &a, const int &i0, const int &i1) { s(a[i0], a[i1]); }
    };
    template <class A, class C, int I, int J, int X, int Y> struct PB
    {
        inline PB(A &a)
        {
            enum { L = X >> 1, M = (X & 1 ? Y : Y + 1) >> 1, IAddL = I + L, XSubL = X - L };
            PB<A, C, I, J, L, M> p0(a);
            PB<A, C, IAddL, J + M, XSubL, Y - M> p1(a);
            PB<A, C, IAddL, J, XSubL, M> p2(a);
        }
    };
    template <class A, class C, int I, int J> struct PB <A, C, I, J, 1, 1>
    {
        inline PB(A &a) { Swap<A, C> s(a, I - 1, J - 1); }
    };
    template <class A, class C, int I, int J> struct PB <A, C, I, J, 1, 2>
    {
        inline PB(A &a) { Swap<A, C> s0(a, I - 1, J); Swap<A, C> s1(a, I - 1, J - 1); }
    };
    template <class A, class C, int I, int J> struct PB <A, C, I, J, 2, 1>
    {
        inline PB(A &a) { Swap<A, C> s0(a, I - 1, J - 1); Swap<A, C> s1(a, I, J - 1); }
    };
    template <class A, class C, int I, int M, bool Stop = false> struct PS
    {
        inline PS(A &a)
        {
            enum { L = M >> 1, IAddL = I + L, MSubL = M - L};
            PS<A, C, I, L, (L <= 1)> ps0(a);
            PS<A, C, IAddL, MSubL, (MSubL <= 1)> ps1(a);
            PB<A, C, I, IAddL, L, MSubL> pb(a);
        }
    };
    template <class A, class C, int I, int M> struct PS <A, C, I, M, true>
    {
        inline PS(A &a) {}
    };
public:
    /**
     * Sorts the array/container arr.
     * \param  arr  The array/container to be sorted.
     */
    template <class Container> inline void operator() (Container &arr) const
    {
        PS<Container, Compare, 1, NumElements, (NumElements <= 1)> ps(arr);
    };
    /**
     * Sorts the array arr.
     * \param  arr  The array to be sorted.
     */
    template <class T> inline void operator() (T *arr) const
    {
        PS<T*, Compare, 1, NumElements, (NumElements <= 1)> ps(arr);
    };
};
#include <iostream>
#include <vector>
int main(int argc, const char * argv[])
{
    enum { NumValues = 32 };
    // Arrays
    {
        int rands[NumValues];
        for (int i = 0; i < NumValues; ++i) rands[i] = rand() % 100;
        std::cout << "Before Sort: \t";
        for (int i = 0; i < NumValues; ++i) std::cout << rands[i] << " ";
        std::cout << "\n";
        StaticSort<NumValues> staticSort;
        staticSort(rands);
        std::cout << "After Sort: \t";
        for (int i = 0; i < NumValues; ++i) std::cout << rands[i] << " ";
        std::cout << "\n";
    }
    std::cout << "\n";
    // STL Vector
    {
        std::vector<int> rands(NumValues);
        for (int i = 0; i < NumValues; ++i) rands[i] = rand() % 100;
        std::cout << "Before Sort: \t";
        for (int i = 0; i < NumValues; ++i) std::cout << rands[i] << " ";
        std::cout << "\n";
        StaticSort<NumValues> staticSort;
        staticSort(rands);
        std::cout << "After Sort: \t";
        for (int i = 0; i < NumValues; ++i) std::cout << rands[i] << " ";
        std::cout << "\n";
    }
    return 0;
}
Benchmarks
The following benchmarks are compiled with clang -O3 and ran on my mid-2012 macbook air.
Time (in milliseconds) to sort 1 million arrays.
The number of milliseconds for arrays of size 2, 4, 8 are 1.943, 8.655, 20.246 respectively.

Here are the average clocks per sort for small arrays of 6 elements. The benchmark code and examples can be found at this question:
Fastest sort of fixed length 6 int array 
Direct call to qsort library function   : 342.26
Naive implementation (insertion sort)   : 136.76
Insertion Sort (Daniel Stutzbach)       : 101.37
Insertion Sort Unrolled                 : 110.27
Rank Order                              : 90.88
Rank Order with registers               : 90.29
Sorting Networks (Daniel Stutzbach)     : 93.66
Sorting Networks (Paul R)               : 31.54
Sorting Networks 12 with Fast Swap      : 32.06
Sorting Networks 12 reordered Swap      : 29.74
Reordered Sorting Network w/ fast swap  : 25.28
Templated Sorting Network (this class)  : 25.01 
It performs as fast as the fastest example in the question for 6 elements. 
The code used for the benchmarks can be found here. 
It includes more features and further optimizations for more robust performance on real-world data.