An efficient prime finder is the 'Sieve of Atkin' and I have this stored for most of the problems on 'Project Euler' than involve primes. It can compute on my machine up to 1 billion (in under a minute) and print them out.
import java.util.Arrays;
public class SieveOfAtkin {
private static int limit = 1000000;
private static boolean[] sieve = new boolean[limit + 1];
private static int limitSqrt = (int)Math.sqrt((double)limit);
public static void main(String[] args) {
    // there may be more efficient data structure
    // arrangements than this (there are!) but
    // this is the algorithm in Wikipedia
    // initialize results array
    Arrays.fill(sieve, false);
    // the sieve works only for integers > 3, so 
    // set these trivially to their proper values
    sieve[0] = false;
    sieve[1] = false;
    sieve[2] = true;
    sieve[3] = true;
    // loop through all possible integer values for x and y
    // up to the square root of the max prime for the sieve
    // we don't need any larger values for x or y since the
    // max value for x or y will be the square root of n
    // in the quadratics
    // the theorem showed that the quadratics will produce all
    // primes that also satisfy their wheel factorizations, so
    // we can produce the value of n from the quadratic first
    // and then filter n through the wheel quadratic 
    // there may be more efficient ways to do this, but this
    // is the design in the Wikipedia article
    // loop through all integers for x and y for calculating
    // the quadratics
    for (int x = 1; x <= limitSqrt; x++) {
        for (int y = 1; y <= limitSqrt; y++) {
            // first quadratic using m = 12 and r in R1 = {r : 1, 5}
            int n = (4 * x * x) + (y * y);
            if (n <= limit && (n % 12 == 1 || n % 12 == 5)) {
                sieve[n] = !sieve[n];
            }
            // second quadratic using m = 12 and r in R2 = {r : 7}
            n = (3 * x * x) + (y * y);
            if (n <= limit && (n % 12 == 7)) {
                sieve[n] = !sieve[n];
            }
            // third quadratic using m = 12 and r in R3 = {r : 11}
            n = (3 * x * x) - (y * y);
            if (x > y && n <= limit && (n % 12 == 11)) {
                sieve[n] = !sieve[n];
            } // end if
            // note that R1 union R2 union R3 is the set R
            // R = {r : 1, 5, 7, 11}
            // which is all values 0 < r < 12 where r is 
            // a relative prime of 12
            // Thus all primes become candidates
        } // end for
    } // end for
    // remove all perfect squares since the quadratic
    // wheel factorization filter removes only some of them
    for (int n = 5; n <= limitSqrt; n++) {
        if (sieve[n]) {
            int x = n * n;
            for (int i = x; i <= limit; i += x) {
                sieve[i] = false;
            } // end for
        } // end if
    } // end for
    // put the results to the System.out device
    // in 10x10 blocks
    for( int i = 0 ; i < sieve.length ; i ++ ) {
        if(sieve[i])
            System.out.println(i);
    }
} // end main
} // end class SieveOfAtkin