Combining Select k random elements from a list whose elements have weights with How can I make a random selection from an inversely-weighted list? and applied to your dictionary:
import random
from operator import mul
class Node:
    __slots__ = ['w', 'v', 'tw']
    def __init__(self, w, v, tw):
        self.w, self.v, self.tw = w, v, tw
def rws_heap(items):
    h = [None]
    for w, v in items:
        h.append(Node(w, v, w))
    for i in range(len(h) - 1, 1, -1):
        h[i>>1].tw += h[i].tw
    return h
def rws_heap_pop(h):
    gas, i = h[1].tw * random.random(), 1
    while gas > h[i].w:
        gas -= h[i].w
        i <<= 1
        if gas > h[i].tw:
            gas -= h[i].tw
            i += 1
    w, v = h[i].w, h[i].v
    h[i].w = 0
    while i:
        h[i].tw -= w
        i >>= 1
    return v
def random_weighted_sample_no_replacement(items, n):
    heap = rws_heap(items)
    for i in range(n):
        yield rws_heap_pop(heap)
def random_weighted_sample_no_replacements_inverse_weights(mapping, n):
    keys, values = zip(*mapping.items())
    total = reduce(mul, (v + 1 for v in values))
    weights = (total / (v + 1) for v in values)
    heap = rws_heap(zip(weights, keys))
    for i in xrange(n):
        yield rws_heap_pop(heap)
I condensed Jason's Python implementation a little, and inverted your weights by using multiplication (shifting all weights up by 1 to allow for the division trick).
Applying this to your dictionary:
>>> list(random_weighted_sample_no_replacements_inverse_weights(d, 3))
[9, 11, 8]
>>> list(random_weighted_sample_no_replacements_inverse_weights(d, 3))
[8, 6, 9]
>>> list(random_weighted_sample_no_replacements_inverse_weights(d, 3))
[4, 8, 5]
>>> list(random_weighted_sample_no_replacements_inverse_weights(d, 3))
[4, 10, 11]
>>> list(random_weighted_sample_no_replacements_inverse_weights(d, 3))
[4, 9, 10]
>>> list(random_weighted_sample_no_replacements_inverse_weights(d, 3))
[5, 10, 8]
>>> list(random_weighted_sample_no_replacements_inverse_weights(d, 3))
[6, 4, 5]
where 8 and 5 show up more often than 7 and 11.