So let's start with a sample data set based on your description:
set.seed(315)
Healthdata <- data.frame(SSE = sample(-6.3:3.5, 21, replace=TRUE), ID = gl(7, 3))
Which gives something like this:
> Healthdata[1:15,]
    SSE ID
1  -0.3  1
2  -6.3  2
3  -1.3  3
4  -3.3  4
5  -5.3  5
6  -4.3  6
7  -4.3  7
8   0.7  8
9  -4.3  9
10 -4.3  10
11 -3.3  11
12  0.7  12
13 -2.3  13
14 -3.3  14
15  0.7  15
I understand that you want a new variable which identifies the quantile group of the individual's socioeconomic status. I would do something like this:
transform(Healthdata, Q = cut(Healthdata$SSE, 
                              breaks = quantile(Healthdata$SSE), 
                              labels = c(1, 2, 3, 4),
                              include.lowest=TRUE))
To return:
    SSE ID Q
1  -1.3  1 2
2  -6.3  2 1
3  -4.3  3 1
4   0.7  4 3
5   1.7  5 3
6   1.7  6 3
7  -5.3  7 1
8   1.7  8 3
9   2.7  9 4
10 -3.3 10 2
11 -1.3 11 2
12 -3.3 12 2
13  1.7 13 3
14  0.7 14 3
15 -4.3 15 1
If you want to see the upper and lower bounds for the quantile ranges, omit the labels = c(1, 2, 3, 4) to return this instead:
    SSE ID           Q
1  -1.3  1 (-4.3,-1.3]
2  -6.3  2 [-6.3,-4.3]
3  -4.3  3 [-6.3,-4.3]
4   0.7  4  (-1.3,1.7]
5   1.7  5  (-1.3,1.7]