The crash you are having is because of the following statement:
{
    Object obj1;
}
This allocates an instance of "Object" on the stack. The scope you created it in ends, so the object goes out of scope, so the destructor (Object::~Object) is invoked.
{
    Object obj1;
    // automatic
    obj1.~Object();
}
This means that the next instruction the application will encounter is
delete this;
There are two problems right here:
- deletecalls the object's destructor, so your destructor indirectly calls your destructor which indirectly calls your destructor which ...
- After the destructor call, deleteattempts to return the object's memory to the place wherenewobtains it from.
By contrast
{
          Object *obj2 = new Object();
}
This creates a stack variable, obj2 which is a pointer. It allocates memory on the heap to store an instance of Object, calls it's default constructor, and stores the address of the new instance in obj2.
Then obj2 goes out of scope and nothing happens. The Object is not released, nor is it's destructor called: C++ does not have automatic garbage collection and does not do anything special when a pointer goes out of scope - it certainly doesn't release the memory.
This is a memory leak.
Rule of thumb: delete calls should be matched with new calls, delete [] with new []. In particular, try to keep new and delete in matching zones of authority. The following is an example of mismatched ownership/authority/responsibility:
auto* x = xFactory();
delete x;
Likewise
auto* y = new Object;
y->makeItStop();
Instead you should prefer
// If you require a function call to allocate it, match a function to release it.
auto* x = xFactory();
xTerminate(x); // ok, I just chose the name for humor value, Dr Who fan.
// If you have to allocate it yourself, you should be responsible for releasing it.
auto* y = new Object;
delete y;
C++ has container classes that will manage object lifetime of pointers for you, see std::shared_ptr, std::unique_ptr.