You may calculate using one demintional array. Little theory,
Let F(a,b) == M(H,T)
1. F(0,b) = b
2. F(a,b) = 2^b - 1, when a+1 >= b
3. F(a,b) = F(a-1,b-1) + F(a,b-1) + 1
Let G(x,y) = F(y,x)  ,then
1. G(x,0) = x                 // RULE (1)
2. G(x,y) = 2^x - 1, when y+1 >= x  // RULE (2) 
3. G(x,y) = G(x-1,y-1) + G(x-1,y) + 1  // RULE(3) --> this is useful, 
// because for G(x,y) need only G(x-1,?), i.e if G - is two deminsions array, then 
// for calculating G[x][?]   need only  previous row G[x-1][?], 
// so we need only last two rows of array.
// Here some values of G(x,y)  
4. G(0,y)  = 2^0 - 1 = 0  from (2) rule.
5. G(1,0)  = 1  from (1) rule.
6. G(1,y) = 2^1 - 1 = 1,  when y > 0,  from (2) rule.
G(0,0) = 0,  G(0,1) = 0,   G(0,2) = 0,  G(0,3) = 0  ...
G(1,0) = 1,  G(1,1) = 1,   G(1,2) = 1,  G(1,3) = 1  ...
7. G(2,0) = 2  from (1) rule
8. G(2,1) = 2^2 - 1 = 3   from (2) rule
9. G(2,y) = 2^2 - 1 = 3 when y > 0,  from (2) rule.
G(2,0) = 2,  G(2,1) = 3,  G(2,2) = 3, G(2,3) = 3, ....
10. G(3,0) = 3  from (1) rule
11. G(3,1) = G(2,0) + G(2,1) + 1 = 2 + 3 + 1 = 6  from (3) rule
12. G(3,2) = 2^3 - 1 = 7,  from (2) rule
Now, how to calculate this G(x,y)
int M(int H, int T ) { return G(T,H); }
int G(int x, int y)
{   
     const int MAX_Y = 100; // or something else
     int arr[2][MAX_Y] = {0} ; 
     int icurr = 0, inext = 1;
     for(int xi = 0; xi < x; ++xi)
     {
          for( int yi = 0; yi <= y ;++yi) 
          {
            if ( yi == 0 )  
                 arr[inext][yi] = xi; // rule (1);
            else if ( yi + 1 >= xi ) 
                 arr[inext][yi] = (1 << xi) - 1; // rule ( 2 )
            else arr[inext][yi] = 
                arr[icurr][yi-1] + arr[icurr][yi] + 1; // rule (3)
          }
          icurr ^= 1; inext ^= 1;          //swap(i1,i2);
     }
     return arr[icurr][y];
}
// Or some optimizing
int G(int x, int y)
{
    const int MAX_Y = 100;
    int arr[2][MAX_Y] = {0};
    int icurr = 0, inext = 1;
    for(int ix = 0; ix < x; ++ix)
    {
        arr[inext][0] = ix; // rule (1)
        for(int iy = 1; iy < ix - 1; ++ iy) 
            arr[inext][iy] = arr[icurr][iy-1] + arr[icurr][iy] + 1; // rule (3)
        for(int iy = max(0,ix-1); iy <= y; ++iy)
            arr[inext][iy] = (1 << ix ) - 1; // rule(2)
        icurr ^= 1 ; inext ^= 1;
    }
     return arr[icurr][y];
}