I can't figure out the difference between Pandas .aggregate and .apply functions.
Take the following as an example: I load a dataset, do a groupby, define a simple function,
and either user .agg or .apply.
As you may see, the printing statement within my function results in the same output
after using .agg and .apply. The result, on the other hand is different. Why is that?
import pandas
import pandas as pd
iris = pd.read_csv('iris.csv')
by_species = iris.groupby('Species')
def f(x):
...: print type(x)
...: print x.head(3)
...: return 1
Using apply:
by_species.apply(f)
#<class 'pandas.core.frame.DataFrame'>
# Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#0 5.1 3.5 1.4 0.2 setosa
#1 4.9 3.0 1.4 0.2 setosa
#2 4.7 3.2 1.3 0.2 setosa
#<class 'pandas.core.frame.DataFrame'>
# Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#0 5.1 3.5 1.4 0.2 setosa
#1 4.9 3.0 1.4 0.2 setosa
#2 4.7 3.2 1.3 0.2 setosa
#<class 'pandas.core.frame.DataFrame'>
# Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#50 7.0 3.2 4.7 1.4 versicolor
#51 6.4 3.2 4.5 1.5 versicolor
#52 6.9 3.1 4.9 1.5 versicolor
#<class 'pandas.core.frame.DataFrame'>
# Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#100 6.3 3.3 6.0 2.5 virginica
#101 5.8 2.7 5.1 1.9 virginica
#102 7.1 3.0 5.9 2.1 virginica
#Out[33]:
#Species
#setosa 1
#versicolor 1
#virginica 1
#dtype: int64
Using agg
by_species.agg(f)
#<class 'pandas.core.frame.DataFrame'>
# Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#0 5.1 3.5 1.4 0.2 setosa
#1 4.9 3.0 1.4 0.2 setosa
#2 4.7 3.2 1.3 0.2 setosa
#<class 'pandas.core.frame.DataFrame'>
# Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#50 7.0 3.2 4.7 1.4 versicolor
#51 6.4 3.2 4.5 1.5 versicolor
#52 6.9 3.1 4.9 1.5 versicolor
#<class 'pandas.core.frame.DataFrame'>
# Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#100 6.3 3.3 6.0 2.5 virginica
#101 5.8 2.7 5.1 1.9 virginica
#102 7.1 3.0 5.9 2.1 virginica
#Out[34]:
# Sepal.Length Sepal.Width Petal.Length Petal.Width
#Species
#setosa 1 1 1 1
#versicolor 1 1 1 1
#virginica 1 1 1 1