This is the pseudocode for the radix sort:
Pseudocode for Radix Sort:
Radix-Sort(A, d)
// Each key in A[1..n] is a d-digit integer. (Digits are
// numbered 1 to d from right to left.)
1. for i = 1 to d do
Use a stable sorting algorithm to sort A on digit i.
This is the Scala code for the radix sort:
object RadixSort {
  val WARP_SIZE = 32
  def main(args: Array[String]) = {
    var A = Array(123,432,654,3123,654,2123,543,131,653,123)
    radixSortUintHost(A, 4).foreach(i => println(i))
  }
  // LSB radix sort
  def radixSortUintHost(A: Array[Int], bits: Int): Array[Int] = {
    var a = A
    var b = new Array[Int](a.length)
    var rshift = 0
    var mask = ~(-1 << bits)
    while (mask != 0) {
      val cntArray = new Array[Int](1 << bits)
      for (p <- 0 until a.length) {
        var key = (a(p) & mask) >> rshift
        cntArray(key)+= 1
      }
      for (i <- 1 until cntArray.length)
        cntArray(i) += cntArray(i-1)
      for (p <- a.length-1 to 0 by -1) {
        var key = (a(p) & mask) >> rshift
        cntArray(key)-= 1
        b(cntArray(key)) = a(p)
      }
      val temp = b
      b = a
      a = temp
      mask <<= bits
      rshift += bits
    }
    b
  }
}
This is the Haskell code for the radix sort:
import Data.Bits (Bits(testBit, bitSize))
import Data.List (partition)
lsdSort :: (Ord a, Bits a) => [a] -> [a]
lsdSort = fixSort positiveLsdSort
msdSort :: (Ord a, Bits a) => [a] -> [a]
msdSort = fixSort positiveMsdSort
-- Fix a sort that puts negative numbers at the end, like positiveLsdSort and positiveMsdSort
fixSort sorter list = uncurry (flip (++)) (break (< 0) (sorter list))
positiveLsdSort :: (Bits a) => [a] -> [a]
positiveLsdSort list = foldl step list [0..bitSize (head list)] where
step list bit = uncurry (++) (partition (not . flip testBit bit) list)
positiveMsdSort :: (Bits a) => [a] -> [a]
positiveMsdSort list = aux (bitSize (head list) - 1) list where
aux _ [] = []
aux (-1) list = list
aux bit list = aux (bit - 1) lower ++ aux (bit - 1) upper where
    (lower, upper) = partition (not . flip testBit bit) list
My question is: Can you formulate a monoid or semigroup for the radix sort?