Could you comment how to handle the following non-linear data (svm regression):
tt <- c(1.38, 1.41, 1.38, 1.57, 1.65, 1.45, 1.38, 1.38, 1.38, 1.69, 2.18, 1.89, 0.00, 0.00, 1.20, 0.00, 1.23, 1.40, 1.38, 1.38, 1.38, 1.08, 1.40, 1.88, 1.76, 1.70, 1.87, 0.00, 1.90, 1.40, 0.00, 1.46, 1.51, 0.01, 1.90, 1.63, 0.00, 0.00, 0.01, 2.00, 1.40, 0.00, 1.69, 1.68, 1.70, 1.40, 1.40, 1.64, 1.98, 2.00, 1.40, 2.00, 2.00, 1.78,1.56, 1.46, 1.69, 1.40, 1.87, 1.38, 0.00, 1.40, 1.43, 1.40, 1.69, 1.69, 1.88, 0.94, 1.69, 1.71, 1.57,1.38, 1.10, 1.70, 2.00, 1.70, 1.08, 1.70, 0.00, 1.70, 1.80,0.00, 1.58, 1.80, 1.69, 1.77, 0.00, 0.00, 1.38, 0.00, 0.00, 1.38, 0.00, 0.00)
pp <- c(4,  6,  6,  5,  6,  5,  4,  4,  4,  5,  7,  5,  6 , 6 , 4,  4,  5 , 4 , 5 , 5 , 5  ,6 , 5 , 5,  6 , 7 , 5,   6 ,  4 , 4 , 6,  6 , 6 , 8,  5,  6 , 6  , 5 , 8,  7 , 6,  6,  5 , 5,  6,  6,  6,  5,  5,  5,  5,  6,  7,  6,  4,  6,  5,  6,  6,  6,  8,  6,  4,  4,  5,  5,  6,  6,  7,  4,  6,  4,  4,  5,  5,  4,  4,  6, 10,  7,  6, 10,  5,  7,  5,  4,  8,  7,  4,  6,  4,  4, 4,  6)
qq <- c(2, 2, 2, 3, 1, 3, 3, 3, 3, 1, 0, 2, 0, 2, 3, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 3, 0, 1, 3, 1, 1, 1, 0, 1, 1, 2, 2, 2, 1, 1, 1, 2, 3, 0, 1, 3, 0, 1, 0, 2, 3, 3, 1, 1, 1, 0, 0, 2, 3, 3, 2, 1, 3, 0, 3, 3, 2, 1, 1, 2, 2, 0, 3, 2, 1, 0, 3, 4, 2, 3, 3, 1)
I tried like this, for example
library(kernlab)
huh <- data.frame(tt,pp,qq)
index <- 1:nrow(huh)
testindex <- sample(index, trunc(length(index)/3))
testset <-huh[testindex,]
trainset <- huh[-testindex,]
mod <- ksvm(tt ~pp+qq, data =trainset,type = "eps-svr", kernel = "rbfdot",kpar ="automatic", C = 10, prob.model = TRUE)
the result looks like
Support Vector Machine object of class "ksvm" 
SV type: eps-svr  (regression) 
 parameter : epsilon = 0.1  cost C = 10 
Gaussian Radial Basis kernel function. 
 Hyperparameter : sigma =  0.637663227203429 
Number of Support Vectors : 55 
Objective Function Value : -224.1407 
Training error : 0.581297 
Laplace distr. width : 1.320399 
I can extract coefficients and bias (w and b) but I can't find the slack variables (soft-margin) that define the loss-function. Can you suggest me another option to fit such type of data?
 
     
     
    